Hydrological ensemble forecasting at ungauged basins: using neighbour catchments for model setup and updating

Author:

Randrianasolo A.,Ramos M. H.,Andréassian V.

Abstract

Abstract. In flow forecasting, additionally to the need of long time series of historic discharges for model setup and calibration, hydrological models also need real-time discharge data for the updating of the initial conditions at the time of the forecasts. The need of data challenges operational flow forecasting at ungauged or poorly gauged sites. This study evaluates the performance of different choices of parameter sets and discharge updates to run a flow forecasting model at ungauged sites, based on information from neighbour catchments. A cross-validation approach is applied on a set of 211 catchments in France and a 17-month forecasting period is used to calculate skill scores and evaluate the quality of the forecasts. A reference situation, where local information is available, is compared to alternative situations, which include scenarios where no local data is available at all and scenarios where local data started to be collected at the beginning of the forecasting period. To cope with uncertainties from rainfall forecasts, the model is driven by ensemble weather forecasts from the PEARP-Météo-France ensemble prediction system. The results show that neighbour catchments can contribute to provide forecasts of good quality at ungauged sites, especially with the transfer of parameter sets for model simulation. The added value of local data for the operational updating of the hydrological ensemble forecasts is highlighted.

Publisher

Copernicus GmbH

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3