Metrics to quantify the importance of mixing state for CCN activity

Author:

Ching JosephORCID,Fast Jerome,West MatthewORCID,Riemer NicoleORCID

Abstract

Abstract. It is commonly assumed that models are more prone to errors in predicted cloud condensation nuclei (CCN) concentrations when the aerosol populations are externally mixed. In this work we investigate this assumption by using the mixing state index (χ) proposed by Riemer and West (2013) to quantify the degree of external and internal mixing of aerosol populations. We combine this metric with particle-resolved model simulations to quantify error in CCN predictions when mixing state information is neglected, exploring a range of scenarios that cover different conditions of aerosol aging. We show that mixing state information does indeed become unimportant for more internally mixed populations, more precisely for populations with χ larger than 75 %. For more externally mixed populations (χ below 20 %) the relationship of χ and the error in CCN predictions is not unique and ranges from lower than −40 % to about 150 %, depending on the underlying aerosol population and the environmental supersaturation. We explain the reasons for this behavior with detailed process analyses.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3