Nucleation modeling of the Antarctic stratospheric CN layer and derivation of sulfuric acid profiles

Author:

Münch SteffenORCID,Curtius JoachimORCID

Abstract

Abstract. Recent analysis of long-term balloon-borne measurements of Antarctic stratospheric condensation nuclei (CN) between July and October showed the formation of a volatile CN layer at 21–27 km altitude in a background of existing particles. We use the nucleation model SAWNUC to simulate these CN in subsiding air parcels and study their nucleation and coagulation characteristics. Our simulations confirm recent analysis that the development of the CN layer can be explained with neutral sulfuric acid–water nucleation and we show that outside the CN layer the measured CN concentrations are well reproduced just considering coagulation and the subsidence of the air parcels. While ion-induced nucleation is expected as the dominating formation process at higher temperatures, it does not play a significant role during the CN layer formation as the charged clusters recombine too fast. Further, we derive sulfuric acid concentrations for the CN layer formation. Our concentrations are about 1 order of magnitude higher than previously presented concentrations as our simulations consider that nucleated clusters have to grow to CN size and can coagulate with preexisting particles. Finally, we calculate threshold sulfuric acid profiles that show which concentration of sulfuric acid is necessary for nucleation and growth to observable size. These threshold profiles should represent upper limits of the actual sulfuric acid outside the CN layer. According to our profiles, sulfuric acid concentrations seem to be below midlatitude average during Antarctic winter but above midlatitude average for the CN layer formation.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3