Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation

Author:

Sayer A. M.ORCID,Hsu N. C.,Bettenhausen C.

Abstract

Abstract. The scan geometry of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, combined with the Earth's curvature, results in a pixel shape distortion known as the "bow-tie effect". Specifically, sensor pixels near the edge of the swath are elongated along-track and across-track compared to pixels near the centre of the swath, resulting in an increase of pixel area by up to a factor of ∼ 9 and, additionally, the overlap of pixels acquired from consecutive scans. The Deep Blue and Dark Target aerosol optical depth (AOD) retrieval algorithms aggregate sensor pixels and provide level 2 (L2) AOD at a nominal horizontal pixel size of 10 km, but the bow-tie distortion means that they also suffer from this size increase and overlap. This means that the spatial characteristics of the data vary as a function of satellite viewing zenith angle (VZA) and, for VZA > 30°, corresponding to approximately 50 % of the data, are areally enlarged by a factor of 50 % or more compared to this nominal pixel area and are not spatially independent of each other. This has implications for retrieval uncertainty and aggregated statistics, causing a narrowing of AOD distributions near the edge of the swath, as well as for data comparability from the application of similar algorithms to sensors without this level of bow-tie distortion. Additionally, the pixel overlap is not obvious to users of the L2 aerosol products because only pixel centres, not boundaries, are provided within the L2 products. A two-step procedure is proposed to mitigate the effects of this distortion on the MODIS aerosol products. The first (simple) step involves changing the order in which pixels are aggregated in L2 processing to reflect geographical location rather than scan order, which removes the bulk of the overlap between L2 pixels and slows the rate of growth of L2 pixel size vs. VZA. This can be achieved without significant changes to existing MODIS processing algorithms. The second step involves additionally changing the number of sensor pixels aggregated across-track as a function of VZA, which preserves L2 pixel size at around 10 km × 10 km across the whole swath but would require algorithmic quality assurance tests to be re-evaluated. Both of these steps also improve the extent to which the pixel locations a user would infer from the L2 data products represent the actual spatial extent of the L2 pixels.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3