A study on the performance of low-cost sensors for source apportionment at an urban background site

Author:

Bousiotis DimitriosORCID,Beddows David C. S.,Singh AjitORCID,Haugen MollyORCID,Diez SebastiánORCID,Edwards Pete M.ORCID,Boies Adam,Harrison Roy M.ORCID,Pope Francis D.ORCID

Abstract

Abstract. Knowledge of air pollution sources is important in policymaking and air pollution mitigation. Until recently, source apportion analyses were limited and only possible with the use of expensive regulatory-grade instruments. In the present study we applied a two-step positive matrix factorisation (PMF) receptor analysis at a background site in Birmingham, UK using data acquired by low-cost sensors (LCSs). The application of PMF allowed for the identification of the sources that affect the local air quality, clearly separating different sources of particulate matter (PM) pollution. Furthermore, the method allowed for the contribution of different air pollution sources to the overall air quality at the site to be estimated, thereby providing pollution source apportionment. The use of data from regulatory-grade (RG) instruments further confirmed the reliability of the results, as well as further clarifying the particulate matter composition and origin. Compared with the results from a previous analysis, in which a k-means clustering algorithm was used, a good consistency between the k means and PMF results was found in pinpointing and separating the sources of pollution that affect the site. The potential and limitations of each method when used with low-cost sensor data are highlighted. The analysis presented in this study paves the way for more extensive use of LCSs for atmospheric applications, receptor modelling and source apportionment. Here, we present the infrastructure for understanding the factors that affect air quality at a significantly lower cost than previously possible. This should provide new opportunities for regulatory and indicative monitoring for both scientific and industrial applications.

Funder

Natural Environment Research Council

Engineering and Physical Sciences Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference66 articles.

1. Austin, E., Novosselov, I., Seto, E., and Yost, M. G.: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor, PLoS One, 10, 1–17, https://doi.org/10.1371/journal.pone.0137789, 2015.

2. Beddows, D. C. S. and Harrison, R. M.: Receptor modelling of both particle composition and size distribution from a background site in London, UK – a two-step approach, Atmos. Chem. Phys., 19, 4863–4876, https://doi.org/10.5194/acp-19-4863-2019, 2019.

3. Beddows, D. C. S., Harrison, R. M., Green, D. C., and Fuller, G. W.: Receptor modelling of both particle composition and size distribution from a background site in London, UK, Atmos. Chem. Phys., 15, 10107–10125, https://doi.org/10.5194/acp-15-10107-2015, 2015.

4. Bousiotis, D., Pope, F. D., Beddows, D. C. S., Dall'Osto, M., Massling, A., Nøjgaard, J. K., Nordstrøm, C., Niemi, J. V., Portin, H., Petäjä, T., Perez, N., Alastuey, A., Querol, X., Kouvarakis, G., Mihalopoulos, N., Vratolis, S., Eleftheriadis, K., Wiedensohler, A., Weinhold, K., Merkel, M., Tuch, T., and Harrison, R. M.: A phenomenology of new particle formation (NPF) at 13 European sites, Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, 2021a.

5. Bousiotis, D., Singh, A., Haugen, M., Beddows, D. C. S., Diez, S., Murphy, K. L., Edwards, P. M., Boies, A., Harrison, R. M., and Pope, F. D.: Assessing the sources of particles at an urban background site using both regulatory instruments and low-cost sensors – a comparative study, Atmos. Meas. Tech., 14, 4139–4155, https://doi.org/10.5194/amt-14-4139-2021, 2021b.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3