Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes

Author:

Pradipta RezyORCID,Lai Pei-Chen

Abstract

Abstract. A major explosion that released a significant amount of energy into the atmosphere occurred in Beirut on 4 August 2020. The energy released may have reached the upper atmosphere and generated some traveling ionospheric disturbances (TIDs), which can affect radio wave propagation. In this study, we used data from the Defense Meteorological Satellite Program (DMSP) and ground-based ionosondes in the Mediterranean region to investigate the ionospheric response to this historic explosion event. Our DMSP data analysis revealed a noticeable increase in the ionospheric electron density near the Beirut area following the explosion, accompanied by some wavelike disturbances. Some characteristic TID signatures were also identified in the shape of ionogram traces at several locations in the Mediterranean. This event occurred during a period of relatively quiet geomagnetic conditions, making the observed TIDs likely to have originated from the Beirut explosion, not from other sources such as auroral activities. These observational findings demonstrate that TIDs from the Beirut explosion were able to propagate over longer distances, beyond the immediate areas of Lebanon and Israel–Palestine, reaching the Mediterranean and eastern Europe.

Funder

Air Force Office of Scientific Research

Publisher

Copernicus GmbH

Reference61 articles.

1. Belehaki, A., Tsagouri, I., Altadill, D., Blanch, E., Borries, C., Buresova, D., Chum, J., Galkin, I., Juan, J. M., Segarra, A., Camilo Timoté, C., Tziotziou, K., Verhulst, T. G. W., and Watermann, J.: An overview of methodologies for real-time detection, characterisation and tracking of traveling ionospheric disturbances developed in the TechTIDE project, J. Space Weather Space Clim., 10, 42, https://doi.org/10.1051/swsc/2020043, 2020. a

2. Boyde, B., Wood, A., Dorrian, G., Fallows, R. A., Themens, D., Mielich, J., Elvidge, S., Mevius, M., Zucca, P., Dabrowski, B., Krankowski, A., Vocks, C., and Bisi, M.: Lensing from small-scale travelling ionospheric disturbances observed using LOFAR, J. Space Weather Space Clim., 12, 34, https://doi.org/10.1051/swsc/2022030, 2022. a

3. Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., and Su, S. Y.: Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1, J. Geophys. Res., 109, A12301, https://doi.org/10.1029/2004JA010583, 2004. a

4. Cervera, M. A. and Harris, T. J.: Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves, J. Geophys. Res.-Space, 119, 431–440, https://doi.org/10.1002/2013JA019247, 2014. a

5. Cheng, K. and Huang, Y.-N.: Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991, J. Geophys. Res., 97, 16995–17004, https://doi.org/10.1029/92JA01462, 1992. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3