On the importance of middle-atmosphere observations on ionospheric dynamics using WACCM-X and SAMI3
-
Published:2024-06-10
Issue:1
Volume:42
Page:255-269
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Author:
Sassi Fabrizio, Burrell Angeline G.ORCID, McDonald Sarah E., Tate Jennifer L., McCormack John P.
Abstract
Abstract. Recent advances in atmospheric observations and modeling have enabled the investigation of thermosphere–ionosphere interactions as a whole-atmosphere problem. This study examines how dynamical variability in the middle atmosphere (MA) affects intra-day changes in the thermosphere and ionosphere. Specifically, this study investigates ionosphere–thermosphere interactions during different time periods of January 2013 using the Specified Dynamics Whole Atmosphere Community Climate Model, eXtended version (SD-WACCM-X), coupled to the Naval Research Laboratory (NRL) ionosphere of the Sami3 is Another Model of the Ionosphere (SAMI3) model. To represent the weather of the day, the coupled thermosphere–ionosphere system is nudged below 90 km toward the atmospheric specifications provided by the Navy Global Environmental Model for High-Altitude (NAVGEM-HA). Hindcast simulations during January 2013 are carried out with the full dataset of observations normally assimilated by NAVGEM-HA and with a degraded dataset where observations above 40 km are not assimilated. Ionospheric regions with statistically significant changes are identified using key ionospheric properties, including the electron density, peak electron density, and height of the peak electron density. Ionospheric changes show a spatial structure that illustrates the impact of two different types of coupling between the thermosphere and the ionosphere: variability induced by wind-dynamo coupling through electric conductivity and ion-neutral interactions in the upper thermosphere. The two simulations presented in this study show that changing the state of the MA affects ionosphere–thermosphere coupling through changes in the behavior and amplitude of non-migrating tides, resulting in improved key ionospheric specifications.
Funder
Office of Naval Research
Publisher
Copernicus GmbH
Reference53 articles.
1. Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T. N., Brown, W. J., Califf, S., Chambodut, A., Chulliat, A., Cox, G. A., Finlay, C. C., Fournier, A., Gillet, N., Grayver, A., Hammer, M. D., Holschneider, M., Huder, L., Hulot, G., Jager, T., Kloss, C., Korte, M., Kuang, W., Kuvshinov, A., Langlais, B., Léger, J. M., Lesur, V., Livermore, P. W., Lowes, F. J., Macmillan, S., Magnes, W., Mandea, M., Marsal, S., Matzka, J., Metman, M. C., Minami, T., Morschhauser, A., Mound, J. E., Nair, M., Nakano, S., Olsen, N., Pavón-Carrasco, F. J., Petrov, V. G., Ropp, G., Rother, M., Sabaka, T. J., Sanchez, S., Saturnino, D., Schnepf, N. R., Shen, X., Stolle, C., Tangborn, A., Tøffner-Clausen, L., Toh, H., Torta, J. M., Varner, J., Vervelidou, F., Vigneron, P., Wardinski, I., Wicht, J., Woods, A., Yang, Y., Zeren, Z., and Zhou, B.: International Geomagnetic Reference Field: the thirteenth generation, Earth Planets Space, 73, 49, https://doi.org/10.1186/s40623-020-01288-x, 2021. a 2. Burrell, A. and Heelis, R.: The influence of hemispheric asymmetries on field-aligned ion drifts at the geomagnetic equator, Geophys. Res. Lett., 39, L19101, https://doi.org/10.1029/2012GL053637, 2012. a 3. Burrell, A., Heelis, R., and Stoneback, R.: Equatorial longitude and local time variations of topside magnetic field-aligned ion drifts at solar minimum, J. Geophys. Res., 117, A04304, https://doi.org/10.1029/2011JA017264, 2012. a 4. Coster, A.: MIT/Haystack Observatory, Data from the CEDAR Madrigal database [data set], XX in the URL is the day of month, https://w3id.org/cedar?experiment_list=experiments3/2013/gps/XXjan13&file_list=los_201301XX.001.h5 (last access: 3 October 2023), 2013. a 5. Eckermann, S. D., Hoppel, K. W., Coy, L., McCormack, J. P., Siskind, D., Nielsen, K., Kochenash, A., Stevens, M. H., Englert, C. R., Singer, W., and Hervig, M.: High-Altitude data assimilation system experiments for the northern summer mesosphere season of 2007, J. Atmos. Sol.-Terr. Phy., 71, 531–551, https://doi.org/10.1016/j.jastp.2008.09.036, 2009. a
|
|