Extending the vehicular network simulator Artery in order to generate synthetic data for collective perception

Author:

Allig Christoph,Wanielik Gerd

Abstract

Abstract. A fundamental for an automated driving car is the awareness of all its surrounding road participants. Current approach to gather this awareness is to sense the environment by on-board sensors. In the future, Vehicle-to-X (V2X) might be able to improve the awareness due to V2X's communication range superiority compared to the on-board sensors' range. Due to a limited amount of communication partners sharing their own ego states, current research focuses particularly on cooperative perception. This means sharing objects perceived by local on-board sensors of different partners via V2X. Data collections using vehicles, driving on real roads, is challenging, since there is no market introduction of cooperative perception yet. Using test cars, equipped with the required sensors are rather expensive and do not necessarily provide results representing the true potential of cooperative perception. Particularly, its potential is highly dependent on the market penetration rate and the amount of vehicles within certain vicinity. Therefore, we consider to create synthetic data for cooperative perception by a simulation tool. After reviewing suitable simulation tools, we present an extension of Artery and its counterpart SUMO by modelling realistic vehicle dynamics and probabilistic sensor models. The generated data can be used as input for cooperative perception.

Funder

European Commission

Publisher

Copernicus GmbH

Reference29 articles.

1. Aramrattana, M., Larsson, T., Jansson, J., and Nåbo, A.: A Simulation Framework for Cooperative Intelligent Transport Systems Testing and Evaluation, Transport. Res. F-Traf., 61, 268–280, https://doi.org/10.1016/j.trf.2017.08.004, 2017. a

2. Barthauer, M. and Hafner, A.: Coupling Traffic and Driving Simulation: Taking Advantage of SUMO and SILAB Together, EPiC Series in Engineering, 2, 56–66, 2018. a

3. BASELABS: Sensor Fusion Library for Algorithm Implementation, available at: https://www.baselabs.de/create/, last access: 15 January 2019. a

4. ETSI: Intelligent Transport Systems (ITS); Access Layer Specification for Intelligent Transport Systems Operating in the 5 GHz Frequency Band, EN 302 663 V1.3.0, ETSI, 2019. a

5. Gomez, A. E., Dos Santos, T. C., Filho, C. M., Gomes, D., Perafan, J. C., and Wolf, D. F.: Simulation Platform for Cooperative Vehicle Systems, in: IEEE Intelligent Transportation Systems Conference, 1347–1352, 8–11 October 2014, Hyatt Regency Qingdao, Qingdao, China, 2014. a

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Local and Cooperative Perception Under Varying Environmental Conditions;Cooperatively Interacting Vehicles;2024

2. MPC-Based Adaptive Cruise Control with Sensor Fusion for Smart Cities;2023 2nd International Conference on Smart Cities 4.0;2023-10-22

3. A Study on Collective Perception with Realistic Perception Modeling;2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall);2023-10-10

4. Modeling Perception Performance in Microscopic Simulation of Traffic Flows Including Automated Vehicles;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

5. Platoon-Local Dynamic Map: Micro cloud support for platooning cooperative perception;2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob);2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3