Bank erosion events and processes in the Upper Severn basin

Author:

Lawler D. M.,Couperthwaite J.,Bull L. J.,Harris N. M.

Abstract

Abstract. This paper examines river bank retreat rates, individual erosion events, and the processes that drive them in the Upper Severn basin, mid-Wales, UK. Traditional erosion pin networks were used to deliver information on patterns of downstream change in erosion rates. In addition, the novel automatic Photo-Electronic Erosion Pin (PEEP) monitoring system was deployed to generate near-continuous data on the temporal distribution of bank erosion and accretion: this allowed focus on the magnitude and timing of individual erosional and depositional events in relation to specific flow episodes. Erosion dynamics data from throughout the Upper Severn basin are combined with detailed information on bank material properties and spatial change in channel hydraulics derived from direct field survey, to assess the relationships between flow properties and bank erosion rates. Results show that bank erosion rates generally increase downstream, but relate more strongly to discharge than to reach-mean shear stress, which peaks near the basin head. Downstream changes in erosion mechanisms and boundary materials, across the upland/lowland transition (especially the degree of development of composite bank material profiles), are especially significant. Examples of sequences of bank erosion events show how the PEEP system can (a) quantify the impact of individual, rather than aggregated, forcing events, (b) reveal the full complexity of bank response to given driving agents, including delayed erosion events, and (c) establish hypotheses of process-control in bank erosion systems. These findings have important implications for the way in which bank erosion problems are researched and managed. The complex responses demonstrated have special significance for the way in which bank processes and channel-margin sediment injections should be handled in river dynamics models.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3