Development of high-precision distributed wireless microseismic acquisition stations

Author:

Qiao ShuaiqingORCID,Duan Hongmei,Zhang QishengORCID,Zhang Qimao,Li Shuhan,Liu Shenghui,Liu Shiyang,Wang Yongqing,Yan Shichu,Li Wenhao,Guo Feng

Abstract

Abstract. In recent years, owing to the shortage of oil and gas resources and increasing difficulty in mining, traditional (wired) microseismic monitoring equipment has been unable to meet the needs of energy exploitation. Therefore, it is necessary to develop new high-precision seismic exploration and data acquisition systems. In this study, we combined advanced acquisition systems with wireless technology to develop a new wireless microseismic acquisition system. The hardware circuit of the acquisition system mainly includes a data acquisition board and a main control board. High-precision analog-to-digital conversion and digital filtering technologies are used to provide data with high signal-to-noise ratios, resolution, and fidelity to the acquisition stations. Key technologies were integrated into the ARM (Advanced RISC Machines) of the main control board: reliable GPS technology was employed to realize synchronous acquisitions among various acquisition stations, and WIFI technology was used to achieve wireless data communication between acquisition stations and the central station, thus improving the data transmission speed and accuracy. After conducting a series of evaluation tests, it was found that the system was stable, convenient to use, and had high data accuracy, therefore providing significant support for the solution to problems encountered in current oil and gas exploration processes, such as the complicated environment and inconvenient construction.

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

Reference13 articles.

1. CNPC Research Institute of Economics and Technology: Report of Developments in Domestic and Foreign Oil and Gas Industries, Petroleum Business News, 2017.

2. Guo, J. and Liu, G.-D.: Current situation and expectation of cable-less seismic acquisition system, Prog. Geophys., 5, 1540–1549, 2009.

3. Huang, X.-L. and Yu, J.-S.:Numerical analysis for the characteristics of SN338 digital seismic instrument, Chinese J. Geophys.-Ch., 37, 597–602, 1994.

4. Li, H.-L. and Liu, M.-Z.: Key techniques of wireless telemetry digital seismograph, Chinese J. Geophys.-Ch., 56, 3673–3682, 2013.

5. Liu, B.: Analysis of the differences between several SERCEL devices, Science & Technology Information, 13, 209–209, 2015.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3