Influence of stratification and wind forcing on the dynamics of Lagrangian residual velocity in a periodically stratified estuary

Author:

Deng Fangjing,Jia Feiyu,Shi RuiORCID,Zhang Shuwen,Lian QiangORCID,Zong Xiaolong,Chen Zhaoyun

Abstract

Abstract. Wind and stratification play pivotal roles in shaping the structure of the Lagrangian residual velocity (LRV). However, the intricate dynamics by which wind and stratification modify the LRV remain poorly studied. This study derives numerical solutions of LRV components and eddy viscosity subcomponents to elucidate the dynamics within the periodically stratified Pearl River estuary. The vertical shear cross-estuary LRV (uL) is principally governed by the interplay among the eddy viscosity component (uLtu), the barotropic component (uLba), and the baroclinic component (uLgr) under stratified conditions. During neap tides, southwesterly winds notably impact uL by escalating uLtu by an order of magnitude within the upper layer. This transforms the eastward flow dominated by uLtu under wind influence into a westward flow dominated by uLba in upper shoal regions without wind forcing. The along-estuary LRV exhibits a gravitational circulation characterized by upper-layer outflow engendered by a barotropic component (vLba) and lower-layer inflow predominantly driven by a baroclinic component (vLgr). The presence of southwesterly winds suppresses along-estuary gravitational circulation by diminishing the magnitude of vLba and vLgr. The contributions of vLba and vLgr are approximately equal, while the ratio between uLba and uLgr (uLtu) fluctuates within the range of 1 to 2 in stratified waters. Under unstratified conditions, LRV exhibits a lateral shear structure due to differing dominant components compared to stratified conditions. In stratified scenarios, the eddy viscosity component of LRV is predominantly governed by the turbulent mean component, while it succumbs to the influence of the tidal straining component in unstratified waters.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3