Assessment of errors and biases in retrievals of X<sub>CO<sub>2</sub></sub>, X<sub>CH<sub>4</sub></sub>,
X<sub>CO</sub>, and X<sub>N<sub>2</sub>O</sub> from a 0.5 cm<sup>–1</sup> resolution solar-viewing
spectrometer
-
Published:2016-08-03
Issue:8
Volume:9
Page:3527-3546
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Hedelius Jacob K.ORCID, Viatte Camille, Wunch DebraORCID, Roehl Coleen M.ORCID, Toon Geoffrey C., Chen JiaORCID, Jones Taylor, Wofsy Steven C., Franklin Jonathan E., Parker Harrison, Dubey Manvendra K.ORCID, Wennberg Paul O.ORCID
Abstract
Abstract. Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON). However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.
Funder
Jet Propulsion Laboratory National Aeronautics and Space Administration Los Alamos National Laboratory
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference43 articles.
1. Bennett, J. M. and Ashley, E. J.: Infrared Reflectance and Emittance of Silver and Gold Evaporated in Ultrahigh Vacuum, Appl. Opt., 4, 221, https://doi.org/10.1364/AO.4.000221, 1965. 2. Chen, J., Samra, J., Gottlieb, E., Budney, J., Daube, C., Daube, B., Hase, F., Gerbig, C., Chance, K., and Wofsy, S.: Boston Column Network: Compact Solar-Tracking Spectrometers and Differential Column Measurements, in: American Geophysical Union Fall Meeting, San Francisco, California, 15–19 December, Abstract ID: A53L-3381, https://doi.org/10.13140/RG.2.1.2284.1361, 2014. 3. Chen, J., Viatte, C., Hedelius, J. K., Jones, T., Franklin, J. E., Parker, H., Gottlieb, E. W., Wennberg, P. O., Dubey, M. K., and Wofsy, S. C.: Differential column measurements using compact solar-tracking spectrometers, Atmos. Chem. Phys., 16, 8479–8498, https://doi.org/10.5194/acp-16-8479-2016, 2016. 4. Connor, B., Boesch, H., Toon, G., Sen, B., Miller, C., and Crisp, D.: Orbiting Carbon Observatory: Inverse method and prospective error analysis, J. Geophys. Res., 113, D05305, https://doi.org/10.1029/2006JD008336, 2008. 5. Dohe, S., Sherlock, V., Hase, F., Gisi, M., Robinson, J., Sepúlveda, E., Schneider, M., and Blumenstock, T.: A method to correct sampling ghosts in historic near-infrared Fourier transform spectrometer (FTS) measurements, Atmos. Meas. Tech., 6, 1981–1992, https://doi.org/10.5194/amt-6-1981-2013, 2013.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|