Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology
-
Published:2011-05-31
Issue:10
Volume:11
Page:5027-5044
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Xing J.,Wang S. X.,Jang C.,Zhu Y.,Hao J. M.
Abstract
Abstract. Statistical response surface methodology (RSM) is successfully applied for a Community Multi-scale Air Quality model (CMAQ) analysis of ozone sensitivity studies. Prediction performance has been demonstrated through cross validation, out-of-sample validation and isopleth validation. Sample methods and key parameters, including the maximum numbers of variables involved in statistical interpolation and training samples have been tested and selected through computational experiments. Overall impacts from individual source categories which include local/regional NOx and VOC emission sources and NOx emissions from power plants for three megacities – Beijing, Shanghai and Guangzhou – were evaluated using an RSM analysis of a July 2005 modeling study. NOx control appears to be beneficial for ozone reduction in the downwind areas which usually experience high ozone levels, and NOx control is likely to be more effective than anthropogenic VOC control during periods of heavy photochemical pollution. Regional NOx source categories are strong contributors to surface ozone mixing ratios in three megacities. Local NOx emission control without regional involvement may raise the risk of increasing urban ozone levels due to the VOC-limited conditions. However, local NOx control provides considerable reduction of ozone in upper layers (up to 1 km where the ozone chemistry is NOx-limited) and helps improve regional air quality in downwind areas. Stricter NOx emission control has a substantial effect on ozone reduction because of the shift from VOC-limited to NOx-limited chemistry. Therefore, NOx emission control should be significantly enhanced to reduce ozone pollution in China.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference55 articles.
1. Amann, M., Bertok, I., Borken, J., Chambers, A., Cofala, J., Dentener, F., Heyes, C., Hoglund, L., Klimont, Z., Purohit, P., Rafaj, P., Schöpp, W., Toth, G., Wagner, F., and Winiwarter, W.: A tool to combat air pollution and climate change simultaneously. Methodology report, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, 2008. 2. Box, G. E. P. and Draper N.: Response Surfaces, Mixtures, and Ridge Analyses, Second Edition of [Empirical Model-Building and Response Surfaces, 1987], Wiley, 2007. 3. Byun, D. W. and Schere, L. K.: Review of the governing equations,computational algorithms and other components of the models-3 Community Multiscale Air Quality(CMAQ) Modeling System, Appl. Mech. Rev., 59(2), 51–77, 2006. 4. Chou, C. C.-K., Tsai, C.-Y., Shiu, C.-J., Liu, S. C., and Zhu, T.: Measurement of NOy during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006): Implications for the ozone production efficiency of NOx, J. Geophys. Res., 114, D00G01, https://doi.org/10.1029/2008JD010446, 2009. 5. Cohan, D. S., Hakami, A., Hu, Y. T., and Russell, A. G.: Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis, Environ. Sci. Technol., 39, 6739–6748, 2005.
Cited by
192 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|