The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core Δ<sup>17</sup>O(SO<sub>4</sub><sup>2–</sup>)

Author:

Sofen E. D.,Alexander B.,Kunasek S. A.

Abstract

Abstract. We use a global three-dimensional chemical transport model to quantify the influence of anthropogenic emissions on atmospheric sulfate production mechanisms and oxidant concentrations constrained by observations of the oxygen isotopic composition (Δ17O = &amp;delta17O–0.52 × &amp;delta18O) of sulfate in Greenland and Antarctic ice cores and aerosols. The oxygen isotopic composition of non-sea salt sulfate (Δ17O(SO42–)) is a function of the relative importance of each oxidant (e.g. O3, OH, H2O2, and O2) during sulfate formation, and can be used to quantify sulfate production pathways. Due to its dependence on oxidant concentrations, Δ17O(SO42–) has been suggested as a proxy for paleo-oxidant levels. However, the oxygen isotopic composition of sulfate from both Greenland and Antarctic ice cores shows a trend opposite to that expected from the known increase in the concentration of tropospheric O3 since the preindustrial period. The model simulates a significant increase in the fraction of sulfate formed via oxidation by O2 catalyzed by transition metals in the present-day Northern Hemisphere troposphere (from 11% to 22%), offset by decreases in the fractions of sulfate formed by O3 and H2O2. There is little change, globally, in the fraction of tropospheric sulfate produced by gas-phase oxidation (from 23% to 27%). The model-calculated change in Δ17O(SO42–) since preindustrial times (1850 CE) is consistent with Arctic and Antarctic observations. The model simulates a 42% increase in the concentration of global mean tropospheric O3, a 10% decrease in OH, and a 58% increase in H2O2 between the preindustrial period and present. Model results indicate that the observed decrease in the Arctic Δ17O(SO42–) – in spite of increasing tropospheric O3 concentrations – can be explained by the combined effects of increased sulfate formation by O2 catalyzed by anthropogenic transition metals and increased cloud water acidity, rendering Δ17O(SO42–) insensitive to changing oxidant concentrations in the Arctic on this timescale. In Antarctica, the Δ17O(SO42–) is sensitive to relative changes of oxidant concentrations because cloud pH and metal emissions have not varied significantly in the Southern Hemisphere on this timescale, although the response of Δ17O(SO42–) to the modeled changes in oxidants is small. There is little net change in the Δ17O(SO42–) in Antarctica, in spite of increased O3, which can be explained by a compensatory effect from an even larger increase in H2O2. In the model, decreased oxidation by OH (due to lower OH concentrations) and O3 (due to higher H2O2 concentrations) results in little net change in Δ17O(SO42–) due to offsetting effects of Δ17O(OH) and Δ17O(O3). Additional model simulations are conducted to explore the sensitivity of the oxygen isotopic composition of sulfate to uncertainties in the preindustrial emissions of oxidant precursors.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3