Future Arctic ozone recovery: the importance of chemistry and dynamics

Author:

Bednarz E. M.,Maycock A. C.,Abraham N. L.ORCID,Braesicke P.,Dessens O.,Pyle J. A.ORCID

Abstract

Abstract. Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a 7 member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ~11.5 DU decade-1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ~50-100 DU below the long-term mean to near present day values. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of two between 1981-2000 and 2061-2080. However, in the presence of a cold and strong polar vortex elevated halogen losses well above the long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a radiatively-driven cooling trend modelled in the Arctic winter mid- and upper stratosphere, but there is less consistency across the seven ensemble members in the lower stratosphere (100-50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively-driven stratospheric cooling. However, individual years characterised by significantly suppressed downwelling, reduced transport and low temperatures continue into the future. We conclude that despite the future long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades.

Funder

European Research Council

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3