Hysteresis in permeability evolution simulated for a sandstone by mineral precipitation and dissolution

Author:

Wetzel MariaORCID,Kempka ThomasORCID,Kühn MichaelORCID

Abstract

Abstract. Mineral dissolution and precipitation can substantially affect rock permeability, which is a critical parameter for a broad range of geological subsurface applications. Virtual experiments on digital pore-scale samples represent a powerful and flexible approach to understand the impact of microstructural alterations on evolving hydraulic rock behaviour and quantify trends in permeability. In the present study, porosity-permeability relations are simulated for a precipitation-dissolution cycle within a typical reservoir sandstone. A hysteresis in permeability is observed depending on the geochemical process and dominating reaction regime, whereby permeability of the six investigated reaction paths varies by more than two orders of magnitude at a porosity of 17 %. Controlling parameters for this hysteresis phenomenon are the closure and re-opening of micro-scale flow channels, derived from changes in pore throat diameter and connectivity of the pore network. In general, a transport-limited regime exhibits a stronger impact on permeability than a reaction-limited regime, which uniformly alters the pore space. In case of mineral precipitation, higher permeability reduction results from successive clogging of pore throats, whereas in case of dissolution, permeability significantly increases due to a widening of existing flow paths. Both, the geochemical process and dominating reaction regime govern characteristic microstructural alterations, which cannot be simply reversed by the inversion of the geochemical processes itself. Hence, permeability evolution clearly depends on the hydrogeochemical history of the sample.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3