Abstract
Abstract. Intrusion of deep saline waters into freshwater aquifers does not only endanger the regional drinking water supply, but also rivers and stagnant waters and their fauna are threatened by salinisation. The upwelling of highly mineralised saline waters in large parts of the North German Basin is favoured by the presence of Elsterian glacial erosion windows in the Lower Oligocene Rupelian Clay, the most important hydraulic confining unit in this region. Lower precipitation rates and decreasing groundwater levels as a consequence of global climate change, but also anthropogenic interventions, such as increasing extraction rates or the use of the deep geologic subsurface as a reservoir, decrease the pressure potential in the freshwater column and may possibly accelerate this primarily geogenic salinisation process in the coming years. Density-driven flow and transport modelling was performed in the scope of the present study to investigate the upwelling mechanisms of deep saline waters across Quaternary window sediments in the Rupelian. Simulation results show that the interactions between the groundwater recharge rate and anthropogenic interventions such as extraction rates of drinking water wells or the utilisation of the deep subsurface, have a significant influence on the groundwater pressure potential in the freshwater aquifer and associated saltwater upwelling. In all scenarios, salinisation is most severe in the sediments of the erosion windows. Hydraulically conductive faults also intensify salinisation if located nearside erosion windows or induce a more distributed or localised salinisation in aquifers with drinking water relevance in areas that do not intersect with erosion windows. A decline in groundwater recharge thereby significantly favours upward saltwater migration. The simulation scenarios further show that a decrease in groundwater recharge also results in freshwater salinisation occurring up to 10 years earlier, which underlines the need for waterworks to initiate effective countermeasures quickly and in time.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Chemical Engineering
Reference35 articles.
1. Beutler, G. and Stackebrandt, W.: The tectonic pattern of the sedimentary cover of Brandenburg – suggestion for a uniform nomenclature, Brandenburg. Geowiss. Beitr., 19, 93–109, 2012 (in German).
2. Brose, D. and Hermsdorf, A.: Geogenic salinization in aquifers of Brandenburg, Brandenburg. Geowiss. Beitr., 24, 7–16, 2017 (in German).
3. Cai, J., Taute, T., and Schneider, M.: Saltwater Upconing Below a Pumping Well in an Inland Aquifer: a Theoretical Modeling Study on Testing Different Scenarios of Deep Saline-Groundwater Pathways, Water Air Soil Pollut., 225, 2203, https://doi.org/10.1007/s11270-014-2203-7, 2014.
4. Chandler, R. and McWhorter, D.: Upconing of the salt-water-fresh-water interface beneath a pumping well, Ground Water, 13, 354–359, https://10.1111/j.1745-6584.1975.tb03599.x, 1975.
5. FUGRO GmbH Berlin: Grundlagenermittlung zur Stofftransportmodellierung Schwarze Pumpe – Tabelle 4, Berlin, 1998 (unpublished, in German).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献