Verification of TRANSPORT Simulation Environment coupling with PHREEQC for reactive transport modelling

Author:

Kempka ThomasORCID,Steding Svenja,Kühn MichaelORCID

Abstract

Abstract. Many types of geologic subsurface utilisation are associated with fluid and heat flow as well as simultaneously occurring chemical reactions. For that reason, reactive transport models are required to understand and reproduce the governing processes. In this regard, reactive transport codes must be highly flexible to cover a wide range of applications, while being applicable by users without extensive programming skills at the same time. In this context, we present an extension of the Open Source and Open Access TRANSPORT Simulation Environment, which has been coupled with the geochemical reaction module PHREEQC, and thus provides multiple new features that make it applicable to complex reactive transport problems in various geoscientific fields. Code readability is ensured by the applied high-level programming language Python which is relatively easy to learn compared to low-level programming languages such as C, C++ and FORTRAN. Thus, also users with limited software development knowledge can benefit from the presented simulation environment due to the low entry-level programming skill requirements. In the present study, common geochemical benchmarks are used to verify the numerical code implementation. Currently, the coupled simulator can be used to investigate 3D single-phase fluid and heat flow as well as multicomponent solute transport in porous media. In addition to that, a wide range of equilibrium and nonequilibrium reactions can be considered. Chemical feedback on fluid flow is provided by adapting porosity and permeability of the porous media as well as fluid properties. Thereby, users are in full control of the underlying functions in terms of fluid and rock equations of state, coupled geochemical modules used for reactive transport, dynamic boundary conditions and mass balance calculations. Both, the solution of the system of partial differential equations and the PHREEQC module, can be easily parallelised to increase computational efficiency. The benchmarks used in the present study include density-driven flow as well as advective, diffusive and dispersive reactive transport of solutes. Furthermore, porosity and permeability changes caused by kinetically controlled dissolution-precipitation reactions are considered to verify the main features of our reactive transport code. In future, the code implementation can be used to quantify processes encountered in different types of subsurface utilisation, such as water resource management as well as geothermal energy production, as well as geological energy, CO2 and nuclear waste storage.

Publisher

Copernicus GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3