Artificial hard-substrate colonisation in the offshore Hywind Scotland Pilot Park

Author:

Karlsson RikardORCID,Tivefälth Malin,Duranović Iris,Martinsson Svante,Kjølhamar Ane,Murvoll Kari Mette

Abstract

Abstract. Artificial substrates associated with renewable offshore energy infrastructure, such as floating offshore wind farms, enable the establishment of benthic communities with a taxonomic composition similar to that of naturally occurring rocky intertidal habitats. The size of the biodiversity impact and the structural changes in benthic habitats will depend on the selected locations. The aim of the study is to assess colonisation and zonation, quantify diversity and abundance, and identify any non-indigenous species present within the wind farm area, as well as to describe changes in the epifouling growth between 2018 and 2020, with regards to coverage and thickness. This article is based on work undertaken within the offshore floating Hywind Scotland Pilot Park, the first floating offshore wind park established in the world, located approximately 25 km east of Peterhead, Scotland. The floating pilot park is situated in water depths of approximately 120 m, with a seabed characterised predominantly by sand and gravel substrates with occasional patches of mixed sediments. The study utilised a work class remotely operated vehicle with a mounted high-definition video camera, deployed from the survey vessel M/V Stril Explorer. A total of 41 structures, as well as their associated sub-components, including turbines substructures, mooring lines, suction anchors and infield cables, were analysed with regards to diversity, abundance, colonisation, coverage and zonation. This approach provides comprehensive coverage of whole structures in a safe and time-saving manner. A total of 11 phyla with 121 different taxa were observed, with macrofauna as well as macroalgae and filamentous algae being identified on the different structures. The submerged turbines measured approximately 80 m in height and exhibited distinct patterns of zonation. Plumose anemones (Metridium senile) and tube-building fan worms (Spirobranchus sp.) dominated the bottom and mid-sections (80–20 m) of the turbines, while kelp and other Phaeophyceae with blue mussels (Mytilus spp.) dominated top sections of the turbines (20–0 m). A general increase in the coverage of the epifouling growth between 2018 and 2020 was observed, whereas the change in thickness between years was more variable.

Funder

Equinor

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference33 articles.

1. Bergman, M. J. N., Ubels, S. M., Duineveld, G. C. A., and Meesters, E. W. G.: Effects of a 5-year trawling ban on the local benthic community in a wind farm in the Dutch coastal zone, ICES J. Mar. Sci., 72, 962–972, https://doi.org/10.1093/icesjms/fsu193, 2015.

2. Bergmark, P. and Jørgensen, D.: Lophelia pertusa conservation in the North Sea using obsolete offshore structures as artificial reefs, Mar. Ecol.-Prog. Ser., 516, 275–280, https://doi.org/10.3354/meps10997, 2014.

3. Bergström, L., Kautsky, L., Malm, T., Rosenberg, R., Wahlberg, M., Capetillo, N. Å., and Wilhelmsson, D.: Effects of offshore wind farms on marine wildlife – a generalized impact assessment, Environ. Res. Lett., 9, 034012, https://doi.org/10.1088/1748-9326/9/3/034012, 2014.

4. Bessel, A.: Kentish Flats offshore wind farm turbine foundation faunal colonisation diving survey, Report no. 08/J/1/03/1034/0839, Tech. rep., Emu Ltd on behalf of Kentish Flats Ltd., 2008.

5. BP: Statistical Review of World Energy 2020, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (last access: 31 March 2022), 2020. Petroleum, B. BP Statistical Review of World Energy 2020, 2020. Please see link:

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3