Last interglacial temperature evolution – a model inter-comparison

Author:

Bakker P.,Stone E. J.,Charbit S.,Gröger M.,Krebs-Kanzow U.,Ritz S. P.,Varma V.,Khon S.,Lunt D. J.,Mikolajewicz U.,Prange M.,Renssen H.,Schneider B.,Schulz M.

Abstract

Abstract. There is a growing number of proxy-based reconstructions detailing the climatic changes during the Last Interglacial period. This period is of special interest because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in the light of projected global warming. However, mainly because synchronizing the different records is difficult, there is no consensus on a global picture of Last Interglacial temperature changes. Here we present the first model inter-comparison of transient simulations covering the Last Interglacial period. By comparing the different simulations we aim at investigating the robustness of the simulated surface air temperature evolution. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–122 ka BP with temperatures 0.4 to 6.8 K above pre-industrial values. This temperature evolution is in line with the changes in June insolation and greenhouse-gas concentrations. For the evolution of July temperatures in the Southern Hemisphere, the picture emerging from the inter-comparison is less clear. However, it does show that including greenhouse-gas concentration changes is critical. The simulations that include this forcing show an early, 128 ka BP July temperature anomaly maximum of 0.5 to 2.6 K. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. In these latitudes maximum January temperature anomalies of respectively −2.5 to 2 K and 0 to 2 K are simulated for the period after 118 ka BP. The inter-comparison is inconclusive on the evolution of January temperatures in the high-latitudes of the Northern Hemisphere. Further investigation of regional anomalous patterns and inter-model differences indicate that in specific regions, feedbacks within the climate system are important for the simulated temperature evolution. Firstly in the Arctic region, changes in the summer sea-ice cover control the evolution of Last Interglacial winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are critical. The third important feedback, having an impact on the temperature evolution of the Northern Hemisphere, is shown to be the presence of remnant continental ice from the preceding glacial period. Another important feedback are changes in the monsoon regime which controls the evolution of temperatures over parts of Africa and India. Finally, the simulations reveal an important land-sea contrast, with temperature changes over the oceans lagging continental temperatures by up to several thousand years. The aforementioned feedback mechanisms tend to be highly model-dependent, indicating that specific proxy-data is needed to constrain future climate simulations and to further enhance our understanding of the evolution of the climate during the Last Interglacial period.

Funder

European Commission

Publisher

Copernicus GmbH

Reference45 articles.

1. Bauch, H. A. and Kandiano, E. S.: Evidence for early warming and cooling in North Atlantic surface waters during the last interglacial, Paleoceanography, 22, PA1201, https://doi.org/10.1029/2005PA001252, 2007.

2. Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nature Clim. Change, 2, 417–424, https://doi.org/10.1038/nclimate1456, 2012.

3. Calov, R., Ganopolski, A., Claussen, M., Petoukhov, V., and Greve, R.: Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system, Clim. Dynam., 24, 545–561, 2005.

4. CAPE-members – Anderson, P., Bennike, O., Bigelow, N., Brigham-Grette, J., Duvall, M., Edwards, M., Fréchette, B., Funder, S., Johnsen, S., Knies, J., Koerner, R., Lozhkin, A., MacDonald, G., Marshall, S., Matthiessen, J., Miller, G., Montoya, M., Muhs, D., Otto-Bliesner, B., Overpeck, J., Reeh, N., Sejrup, H. P., Turner, C., and Velichko, A.: Last Interglacial Arctic warmth confirms polar amplification of climate change, Quaternary Sci. Rev., 25, 1383–1400, 10.1016/j.quascirev.2006.01.033, 2006.

5. Chen, G., Kutzbach, J.E., Gallimore, R., and Liu, Z.: Calendar effect on phase study in paleoclimate transient simulation with orbital forcing, Climate Dynamics, 37, 1949–1960, https://doi.org/10.1007/s00382-010-0944-6, 2011.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3