Evidence for ice particles in the tropical stratosphere from in-situ measurements

Author:

de Reus M.,Borrmann S.,Heymsfield A. J.,Weigel R.,Schiller C.,Mitev V.,Frey W.,Kunkel D.,Kürten A.,Curtius J.,Sitnikov N. M.,Ulanovsky A.,Ravegnani F.

Abstract

Abstract. In-situ ice crystal size distribution measurements are presented within the tropical troposphere and lower stratosphere. The measurements were performed using a combination of a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) which were installed on the Russian high altitude research aircraft M55 "Geophysica" during the SCOUT-O3 campaign in Darwin, Australia. The objective of the campaign was to characterise the outflow of the Hector convective system, which appears on an almost daily basis during the pre-monsoon season over the Tiwi Islands, north of Darwin. In total 90 encounters with ice clouds, between 10 and 19 km altitude were selected from the dataset and were analysed. Six of these encounters were observed in the lower stratosphere, up to 1.4 km above the local tropopause, and were a result of overshooting convection. The ice crystals observed in the stratosphere comprise sizes up to 400 μm maximum dimension, include an ice water content of 0.1×10−3–1.7×10−3 g m−3 and were observed at ambient relative humidities (with respect to ice) between 75 and 157%. Three modal lognormal size distributions were fitted to the average size distributions for different potential temperature intervals, showing that the shape of the size distribution of the stratospheric ice clouds are similar to those observed in the upper troposphere. In the tropical troposphere the effective radius of the ice cloud particles decreases from 100 μm at about 10 km altitude, to 3 μm at the tropopause, while the ice water content decreases from 0.04 to 10−5 g m−3. No clear trend in the number concentration was observed with altitude, due to the thin and inhomogeneous characteristics of the observed cirrus clouds. The ice water content calculated from the observed ice crystal size distribution is compared to the ice water content derived from two hygrometer instruments. This independent measurement of the ice water content agrees within the combined uncertainty of the instruments for ice water contents exceeding 2×10−4 g m−3. Stratospheric residence times, calculated based on gravitational settling only, show that the ice crystals observed in the stratosphere over the Hector storm system have a high potential for humidifying the stratosphere. Utilizing total aerosol number concentration measurements from a four channel condensation particle counter, it can be shown that the fraction of activated ice particles with respect to the number of available aerosol particles ranges from 1:300 to 1:30 000 for tropical upper tropospheric ice clouds with ambient temperatures below −75°C.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3