Atmospheric tracers during the 2003–2004 stratospheric warming event and impact of ozone intrusions in the troposphere
Author:
Liu Y.,Liu C. X.,Wang H. P.,Tie X.,Gao S. T.,Kinnison D.,Brasseur G.
Abstract
Abstract. We use the stratospheric/tropospheric chemical transport model MOZART-3 to study the distribution and transport of stratospheric O3 during the exceptionally intense stratospheric sudden warming event observed in January 2004 in the Northern polar region. A comparison between observations by the MIPAS instrument on board the ENVISAT spacecraft and model simulations shows that the evolution of the polar vortex and of planetary waves during the warming event plays an important role in controlling the spatial distribution of stratospheric ozone and the downward ozone flux in the lower stratospheric and upper tropospheric regions. Compared to the situation during the winter of 2002–2003, lower ozone concentrations were transported from the polar regions (polar vortex) to mid-latitudes, leading to exceptional large areas of low ozone concentrations outside the polar vortex and "low-ozone pockets" in the middle stratosphere. The unusually long-lasting stratospheric westward winds (easterlies) during the 2003–2004 event greatly restricted the upward propagation of planetary waves, causing the weak transport of ozone-rich air originated from low latitudes to the middle polar stratosphere (10 hPa). The restricted wave activities led to a reduced downward ozone flux from the lower stratosphere (LS) to the upper troposphere (UT), especially in East Asia. Consequently, in this region during wintertime (December and January), the column ozone between 100 and 300 hPa was about 10% lower during the 2003–2004 event compared to the situation in 2002–2003.
Publisher
Copernicus GmbH
Reference52 articles.
1. Baldwin, M. P. and Holton, J. R.: Climatology of the stratospheric polar vortex and Planetary wave breaking, J. Atmos. Sci., 45, 1123–1142, 1988. 2. Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic Oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104, 30 937–30 946, 1999. 3. Baldwin, M. P., Thompson, D. W. J., Shuckburgh, E. F., Norton, W. A., and Gillett, N. P.: Weather from the stratosphere?, Science, 301, 317–318, 2003. 4. Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Muller, J. F., Granier, C., and Tie, X. X.: MOZART, a global chemical transport model for ozone and related chemical tracers 1. Model description, J. Geophys. Res., 103, 28 265–28 289, 1998. 5. Brewer, A. W.: Evidence for a world circulation provided by the measurement of helium and water vapor distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363, 1949.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|