Synoptic influences on springtime tropospheric O<sub>3</sub> and CO over the North American export region observed by TES

Author:

Hegarty J.,Mao H.,Talbot R.

Abstract

Abstract. The relationship between synoptic circulation patterns over the western North Atlantic Ocean in spring (March, April, and May) and tropospheric O3 and CO was investigated using retrievals from the Tropospheric Emission Spectrometer (TES) for 2005 and 2006. Seasonal composites of TES retrievals reprocessed to remove the artificial geographic structure added from the a priori revealed a channel of slightly elevated O3 (>55 ppbv) and CO (>115 ppbv) at the 681 hPa retrieval level between 30° N and 45° N extending from North America out over the Atlantic Ocean. Ozone and CO in this region were correlated at r=0.32 with a slope value of 0.16 indicative of the overall impact of photochemical chemical processes in North American continental export. Composites of TES retrievals for the six predominant circulation patterns identified as map types from sea level pressure fields of the NCEP FNL analyses showed large variability in the distribution of tropospheric O3. Map types featuring cyclones near the US east coast (MAM2–MAM5) produced the greatest export to the lower free troposphere with O3>65 ppbv and O3-CO slopes ranging 0.25–0.36. HYSPLIT backward trajectories indicated that the high O3 levels were possibly a result of pollutants lofted to the free troposphere by the warm conveyor belt (WCB) of a cyclone. An important finding was that pollutant export occurred in the main WCB branch to the east of the cyclone and in a secondary branch circling to the back of the cyclone center. Conversely, a map type featuring a large anticyclone dominating the flow over the US east coast (MAM6) restricted export with O3 levels generally <45 ppbv and an O3-CO slope near zero. There was also evidence of stratospheric intrusions particularly to the north of 45° N in the 316 hPa composites predominately for MAM1 which featured a large cyclone near Newfoundland. However, it was not clear from the available data that these intrusions had a strong impact on the 681 hPa O3 composites in the western North Atlantic Ocean further south where the data showed clear evidence of the influence of pollutant export.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3