Sensitivity of tracer transport to model resolution, forcing data and tracer lifetime in the general circulation model ECHAM5

Author:

Aghedo A.,Rast S.,Schultz M. G.

Abstract

Abstract. The transport of tracers in the general circulation model ECHAM5 is analysed using 9 independent idealized tracers with constant lifetimes released in different altitude regions of the atmosphere. The source regions were split into the tropics, Northern and Southern Hemisphere. The dependency of tracer transport on model resolution is tested in the resolutions T21L19, T42L19, T42L31, T63L31 and T106L31, by employing tracers with a globally uniform lifetime of 5 months. Each of the experiments uses prescribed sea surface temperatures and sea ice fields of the 1990s. The influence of meteorology and tracer lifetimes were tested by performing additional experiments in the T63L31 resolution, by nudging ECHAM5 towards the European Centre for Medium Range Weather Forecast 40 years re-analysis data (ERA40), and by using tracer lifetimes of 0.5 and 50 months, respectively. The transport of tracers is faster in the finer resolution models and is mostly dependent on the number of vertical levels. We found a decrease in the inter-hemispheric transport of tracers with source region at the surface or the tropopause in the coarse resolution models due to increasing recirculation within the source region and vertical mixing. However, a coarse model resolution leads to enhanced inter-hemispheric transport in the stratosphere. The use of ERA40 data only slightly affects the inter-hemispheric transport of surface and tropopause tracers, whereas it increases the inter-hemispheric and vertical transport in the stratosphere by up to 100% and by a factor of 2.5, respectively. The inter-hemispheric transport time was deduced from simulations with tracers of infinite lifetime and source regions at the surface in the Northern and Southern Hemisphere. Again, the transport was found to be faster for models with higher vertical resolution. We find inter-hemispheric transport times of about 7 to 9 months which are lower than the values reported in the literature, based for example on 85Kr observations.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3