Concept of a Critical Infrastructure Network Modelling Approach for Flood Risk Management

Author:

Schotten Roman,Bachmann Daniel

Abstract

<p>In flood risk analysis it is a key element to determine consequences of flooding to assets, people and infrastructures. However, damages to critical infrastructure networks (CIN) are not always restricted to inundated areas. The effects of directly impacted objects cascade to other infrastructures, which are indirectly affected by a flood. Modelling critical infrastructure networks is one possible answer to the question ‘how to include indirect and direct impacts to critical infrastructures in a flood risk analysis?’.</p><p>The modelling of complex CIN is utilized for different purposes: For modelling transportation routing, for damage assessments due to cyber attacks or infrastructure and interdependency analysis of water and waste water flow. For the purpose of flood risk assessments and, finally, in flood risk management application cases are scarce. The presented work introduced a method to overcome this gap. Major challenge is to balance the simplicity of a modeling approach with the resemblance of real interdependencies in a CIN and their task to supply services to end users. The more complex and realistic the network model is desired to be, the harder it is to gather the necessary data and the more expertise is necessary for potential users of this method. Additionally, users are required to switch from a raster or cell-based calculation philosophy to a network-based philosophy including points, connectors (edges) and areas (surfaces).</p><p>In this work, a network-based and topology-based method for a catchment-wide analysis is presented. The basic model elements (points, connectors and polygons) are utilized to model the complex CIN interdependencies. The CIN-module of the freely available software package ProMaIDes<sup>1</sup>, a state-of-the-art flood risk analysis tool, is used. The module is suited for an analysis of critical infrastructure damages, disruption of infrastructures and quantifies those damages by the number of disrupted users and the disruption duration. In a case study in Accra, Ghana, the method capabilities are showcased in a multisectoral model. Sectors included are electricity supply, fresh water supply, telecommunication services, health sector, emergency services and transportation. The model consists of 419 point elements, 472 polygon elements and 1124 connector elements. A synthetic precipitation event is used to visualize the reactions of the model as well as display first results. The case study has shown the flexibility and scalability of the introduced method to differentiate CI sector specifics. Consequently, the potential of the method to support flood risk management is discussed.</p><p> </p><p><sup>1 </sup>https://promaides.h2.de</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3