Lower magnitude volcanic eruptions as Global Catastrophic Risks

Author:

Mani LaraORCID,Tzachor Asaf,Cole Paul

Abstract

<p>Large-magnitude volcanic eruptions have long been considered to pose a threat to the continued flourishing of humanity. The dominant narrative focuses on the nuclear-winter climatic scenarios that may develop as a result of a large-magnitude eruption (magnitudes 7+ on the Volcanic Explosivity Index (VEI)) propelling large quantities of ash and gas into our upper atmosphere and devastating global crop production. However, the probability of such an event remains rare, and this narrative fails to fully consider the vulnerability component of the risk equation. We propose that volcanic eruptions of even moderate magnitudes (VEI 3-6) could constitute a global catastrophic risk (events that might inflict damage to human welfare on a global scale) where the impacts of the eruption are amplified through cascading critical system failures.</p><p>Increased globalisation in our modern world has resulted in our overreliance on global critical system – networks and supply chains vital to the support and continued development of our societies (e.g. submarine cables, global shipping routes, transport and trade networks). We observe that many of these critical infrastructures and networks converge in regions where they could be exposed to moderate-scale volcanic eruptions (VEI 3-6). These regions of intersection, or <em>pinch points</em>, present localities where we have prioritised efficiency over resilience, and manufactured a new GCR landscape, presenting a scenario for global risk propagation. We present seven global pinch points, including the Strait of Malacca and the Mediterranean, which represent localities where disruption to any of these systems can result in a cascade of global disruptions. This is exemplified by the 2010 Eyjafjallajökull VEI 4 eruption which resulted in the closure of European airspace and cascaded to cause global disruption to just-in-time supply chains and transportation networks.</p><p>We suggest that volcanic risk assessments should incorporate interdisciplinary systems thinking in order to increase our resilience to volcanic GCRs.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3