Strategic expansion of the Arctic-Boreal carbon flux network

Author:

Arndt KyleORCID,Natali Susan,

Abstract

Permafrost soils store vast amounts of carbon, twice as much as the atmosphere. With climate warming occurring at a rate three to four times the global average in Arctic-boreal ecosystems this carbon is at risk of being released to the atmosphere in the form of carbon dioxide or methane (hereby, carbon fluxes) exacerbating global climate warming. However, gaps in carbon flux data in high latitude ecosystems limit our ability to understand, upscale, model, and project carbon fluxes, which in turn limit our ability to set accurate emissions reduction targets to stay within globally agreed upon temperature thresholds such as 1.5 or 2°C. To address this, we are strategically expanding the informal Arctic-boreal carbon flux network through the installation of ~10 new eddy covariance sites and supporting expanded measurements (during winter and for CH4) at existing sites. To guide site selection decision making, we are using a representativeness analysis of the current eddy covariance network, determining the Euclidean distance in environmental data space using key carbon flux drivers at a 1 km2 resolution across the Arctic-boreal region (Pallandt et al., 2022). Analyses show a lack of representation in the high Arctic, Siberia, and Eastern Canada, and representation is substantially lower when considering only sites with year-round measurement or that measure methane, limiting our ability to estimate the full impact of carbon fluxes from the Arctic-boreal region. Additional consideration is given to logistical constraints, partnerships, and modeling gaps. Work has begun including a re-installation in Churchill, MB, and upgrades for year-round and additional instrumentation for 4 towers in Alberta and the Northwest Territories and a site in Iqaluit, NU. We will further synthesize existing network data to inform the Dynamic Vegetation [Model] Dynamic Organic Soil Terrestrial Ecosystem Model (DVM-DOS-TEM) model and use machine learning approaches to upscale Arctic-boreal carbon fluxes.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3