ASKOS Campaign 2021/2022: Overview of measurements and applications

Author:

Marinou EleniORCID,Amiridis VassilisORCID,Paschou Peristera,Tsikoudi IoannaORCID,Tsekeri AlexandraORCID,Daskalopoulou VassilikiORCID,Baars HolgerORCID,Floutsi AthinaORCID,Kouklaki DimitraORCID,Pirloaga Razvan,Marenco FrancoORCID,Kazoudi MariaORCID,O Connor EwanORCID,Pfitzenmaier LukasORCID,Zenk Cordula,Ryder ClaireORCID,Von Bismarck Jonas,Fehr ThorstenORCID,

Abstract

In the framework of the Joint Aeolus Tropical Atlantic Campaign (JATAC), the ASKOS experiment was implemented in Cabo Verde during summer and autumn of 2021 and 2022. The main objective of ASKOS was the collection of an unprecedented dataset of synergistic measurements in the region, to be used to address a wide range of scientific objectives, namely the support of the validation of Aeolus mission’s products, the study of the processes affecting dessert dust transport (water vapor, giant particles, mixing with boundary layer dynamics), the characterization of the cloud microphysics, the effect of dust particles in the cloud formation over the region, the effect of the large dust particles on radiation and others.During the ASKOS experiment, intense ground-based remote sensing and airborne in situ measurements took place on and above Mindelo on the island of São Vicente, Cabo Verde. At the Ocean Science Center in Mindelo (OSCM), a full ACTRIS remote sensing super site was set up in 2021, including a multiwavelength-Raman-polarization lidar PollyXT, an AERONET sun photometer, a Scanning Doppler wind lidar, a microwave radiometer and a cloud radar belonging to ESA fiducial reference network (FRM4Radar). Additionally, the ESA’s reference lidar system eVe, a combined linear/circular polarization lidar with Raman capabilities, was deployed. In 2022, the operations were enhanced with the deployment of airborne in-situ aerosol measurements on-board UAVs deployed by the Cyprus Institute, solar radiation measurements supported by PMOD/WRC, dust particle orientation measurements from the WALL-E lidar of National Observatory of Athens, and radiosonde releases equipped with additional electric field and electric charge measurements. The campaign was supported by dedicated numerical weather and dust simulations from CAMS and ECMWF, and tailored WRF simulations with nested domains above the campaign site.  From the ASKOS dataset, three cases have been selected as "golden cases” where multiple JATAC airborne platforms and Aeolus satellite performed collocated measurements alongside with the ground-based instrumentation around the ASKOS operations site. Furthermore, multiple synergistic measurements with the JATAC airborne platforms were performed in the broader Cabo Verde region. Here, we quickly introduce ASKOS measurements and present first results. 

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lidar depolarization characterization using a reference system;Atmospheric Measurement Techniques;2024-03-25

2. eVe Lidar Measurements during the ASKOS/JATAC Campaign;16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023;2023-09-05

3. Assessing the Impact of Aeolus Wind Profiles in WRF-Chem Model Dust Simulations in September 2021;16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3