MultiResUNet, VGG16, and U-Net applications for landslide detection

Author:

Lee SaroORCID,Rezaie Fatemeh,Panahi MahdiORCID

Abstract

The frequent occurrence of disastrous landslides can lead to significant infrastructure damages, loss of life, and the relocation of populations. Early detection of landslides is crucial for mitigating the consequences. Today, deep learning algorithms, particularly fully convolutional networks (FCNs) and their variants such as the ResU-Net, have been utilized to rapidly and automatically detecting landslides. In the current study, a novel method using three new deep learning models: MultiResUNet, VGG16, and U-Net was used to detect landslides in Hokkaido Island, Japan. Our dataset is comprised of Sentinel-2 images and a mask layer, which includes "landslide" or "non-landslide" labels. The suggested framework was based on the analysis of satellite images of landslide-prone locations using bands 2 (blue), 3 (green), 4 (red), and 5 (visible and near-infrared) of Sentinel 2, slope and elevation factors. We trained each model on the dataset and evaluated their performance using a variety of statistical indexes, including precision, recall, and F1 score. The results showed that the MultiResUNet model outperformed the other two models, achieving an accuracy of 82.7%. The VGG16 and U-Net models achieved accuracies of 65.5% and 67.2%, respectively. The results indicated the capability of deep learning algorithms to process satellite images for early landslide detection and provide the opportunity of implementing efficient and effective disaster management strategies.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing Sustainable Solutions Using Technological Approaches for Disaster Management and Energy Access in Mountainous Ranges: A Case Study of Sera Village, India;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3