Non-structural carbohydrates in fine roots and rhizomes in warmed subarctic grasslands

Author:

Bhattarai BiplabiORCID,Richter AndreasORCID,Metze Dennis,Sigurdsson Bjarni D.ORCID,Sigurdsson Páll,Leblans Niki,Janssens Ivan,Ostonen IvikaORCID

Abstract

Climate predictions for subarctic regions show a higher rise in surface temperature than the global average, which will subsequently raise the soil temperature (Ts) in those regions. In response to soil warming, an increase in photosynthetically active aboveground biomass is expected, which will modify the amount of carbon assimilated. This will impact the amount of carbon allocated to aboveground and belowground growth, to root exudations and surplus carbon that might be stored as non-structural carbohydrates (NSCs). We here ask the question if soil warming affects NSCs concentration and pools in fine roots and rhizomes in subarctic grasslands.We investigated the effects of soil warming duration (medium-term (11-yr) vs. long-term (>60-yr) warmed grassland) and magnitude from 0 to +8.4 °C on community-level soluble NSCs (glucose, fructose and saccharose) in short-living fine roots and long-living rhizomes. Additionally, we determined NSCs in fine roots and rhizomes of three dominating species- Anthoxanthum odoratum, Ranunculus acris and Equisetum spp. along the soil warming gradient.We saw a significant increase in community-level total NSCs in rhizomes driven by an increase in the amount of saccharose under medium-term warming. The community-level saccharose concentration in rhizomes was positively related to the abundance of grasses in both grasslands. Both changes in concentration of NSCs and biomass of fine roots and rhizomes at the community level contributed to a significant change in NSCs pool in belowground plant organs along the soil warming gradient. At the species level, the amount of NSCs was significantly higher in Ranunculus acris; the significant difference in fine roots and rhizomes in their NSCs was observed in Equisetum spp. and the significant effect of soil warming on NSCs in fine roots and rhizomes was observed in Anthoxanthum odoratum.We highlight the species-specific differences in NSCs concentrations and analyze the effects of soil warming duration and magnitude on the community-level change in NSCs reserves in belowground plant organs.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE STUDY OF THE COMPOSITION OF CHLOROFORM FRACTION OF RANUNCULUS ACRIS L.;Chemistry, Technology and Application of Substances;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3