Recent progress and outlook for the ECMWF Integrated Forecasting System

Author:

Balsamo GianpaoloORCID,Rabier Florence,Balmaseda MagdalenaORCID,Bauer PeterORCID,Brown Andy,Dueben PeterORCID,English Steve,McNally Tony,Pappenberger FlorianORCID,Sandu Irina,Thepaut Jean-Noël,Wedi Nils

Abstract

ECMWF recent improvements on scientific and technological fronts will be presented. In 2021 two new operational upgrades of the Integrated Forecasting System (IFS), cycles 47r2 and 47r3, have been introduced. In 2022 the ECMWF High-Performance Computing (HPC) facility has migrated from Reading, UK to a new data centre in Bologna, Italy, and on 18 October 2022 the operational system has been ported to a new supercomputer with enhanced capacity, that will pave the way for an increase in resolution in 2023 with the implementation of IFS cycle 48r1.IFS Cycle 47r2 was first introduced on 11 May 2021 and its key features included changing the vertical resolution of the Ensemble forecast system (ENS) from 91 to 137 levels, the same used in the high-resolution forecast (HRES). This was made possible by introducing single precision arithmetic in both the HRES and ENS forecast systems. The single precision itself is neutral but enabled the ENS change which led to significant forecast skill improvement. Five months later, ECMWF introduced Cycle 47r3 operationally on 12 October 2021. This included major changes to the model physics that had been under development for several years. A more consistent formulation of boundary layer turbulence, new deep convection closure and cloud microphysics changes have increased the realism of the water cycle.The next science upgrade, cycle 48r1, will be implemented in 2023 on our new HPC system in Bologna. This will see an enhancement of the ENS horizontal resolution to the TCo1279 grid (approximately 9km), the same resolution currently used by the HRES. There will also be an increase of the data assimilation resolution used in the incremental 4D-Var minimisation, and the use a new object orientated approach to run the 4D-Var atmospheric data assimilation (OOPS). Other important changes in 48r1 include running a daily 100 members extended range ensembles, introducing a new multi-layer snowpack model, and improving the atmospheric energy and water conservation.Looking further ahead, future higher resolution capabilities will be accelerated by the digital twin developments under the European Commission Destination Earth programme, which will build km-scale capability for a range of potential future HPC architectures. Major efforts have been invested in the code scalability of the Integrated Forecasting System to be able to run on GPUs and investigating alternative dynamical core options. Data assimilation will evolve towards a fully coupled approach to maximise the exploitation of observations and benefit all components of the Earth system (atmosphere, land, ocean) in a consistent way. Machine Learning (ML) will be exploited to enhance the performance and efficiency of our systems. Finally, our Copernicus partnership with the European Commission has just entered its second phase. Synergistic interactions between meteorology and composition will be pursued for the mutual benefit of both and preparatory steps for next ECMWF climate reanalysis, ERA6, and new seasonal forecasting system, SEAS6, have already started. Several major upgrades in ERA6 and SEAS6 will aim at mitigating against systematic model biases to produce climate records with significantly improved time consistency, and enhanced reliability for extended-range predictions.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3