A New Vs30 Prediction Strategy Taking Topography, Geology, Terrain and Water Saturation into Account: Application to Türkiye and California

Author:

Okay Hakan BoraORCID,Özacar Atilla Arda

Abstract

The time averaged shear wave velocity of the top 30 meters (Vs30) is the most widely used parameter for the geotechnical characterization of site conditions. However, the spatial availability of Vs30 observations are rather limited except specific areas where conducted micro-zonation studies include closely spaced measurements suitable for assessment of earthquake site effects. In order to infer Vs30, global models use slope or morphological terrain classes as proxies. In a regional scale, these proxies are commonly combined with geologic and geotechnical data to improve the accuracy of Vs30 predictions. So far, a region specific Vs30 model that would aid seismic hazard assessments is not yet constructed for Türkiye and its near vicinity. In this study, a new Vs30 prediction strategy is developed using data from Türkiye and California, and its performance is compared with others.At first, Vs30 measurements are classified into 4 sedimentary rock classes according to their ages (Quaternary-Pliocene, Miocene, Paleogene, Pre-Paleogene) and 3 non-sedimentary rock classes (Intrusive, Extrusive, Metamorphic). Observations from Quaternary-Pliocene rocks are most abundant and characterized by large data scatter, thus further divided into 2 major terrain classes. Since the reduction in Vs30 due to fluid saturation is pronounced, especially in unconsolidated young units, Quaternary-Pliocene rocks are also differentiated as saturated if the water table depth is less than 30 meters and unsaturated otherwise. In California, saturation is determined by using available groundwater measurements. Throughout Türkiye, flat areas with elevation differences less than 30 meters from water bodies (sea, lake, and major rivers) are mapped out as saturated zones. After the elimination of outliers, slope and elevation based Vs30 prediction equations are developed separately for sub-classes of Quaternary-Pliocene, Miocene, and Paleocene aged sedimentary rocks using multi-variable linear regression while Vs30 is fixed to class average in others. Resultant model misfits and comparisons with results of micro-zonation study conducted across İstanbul, clearly indicate that our proposed Vs30 prediction strategy is performing better, especially in younger sedimentary units and thus provide a new, more accurate Vs30 model of Türkiye. 

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3