Evaluation of total ozone measurements from Geostationary Environmental Monitoring Satellite (GEMS)

Author:

Baek Kanghyun,Kim Jae HwanORCID,Bak JuseonORCID,Haffner David P.ORCID,Kang Mina,Hong Hyunkee

Abstract

Abstract. As all life on earth depends crucially on atmospheric ozone, low earth orbiting (LEO) satellites have been used to monitor atmospheric ozone to reduce its impact on the environment and public health. The continued interest in air pollution and stratospheric ozone variability has motivated the development of a geostationary environmental monitoring satellite (GEMS) for hourly ozone monitoring. This paper provides the atmospheric science community with the world's first assessment of GEMS total column ozone (TCO) retrieval performance and diurnal ozone variation. The algorithm used for GEMS is a more advanced version of its predecessor, the TOMS-V8 algorithm. In addition to calculating total ozone, the algorithm has the advantage of providing ozone profile and retrieval error information. To assess the performance of the GEMS algorithm, the hourly GEMS total ozone was compared with ground-based measurements from four Pandora instruments and other satellite platforms from TROPOMI and OMPS. A high correlation of 0.91 or more with GEMS and Pandora TCO at Seoul, Busan, and Yokosuka but a low correlation of 0.83 at Ulsan, which is significantly smaller than at other sites. Root-mean-squared error (RMSE) showed satisfactory small values, with the lowest RMSE of 2.06 DU. Positive mean biases (MBs) were observed at all sites. This agreement suggests that the GEMS hourly ozone monitoring allows for continuous updates about stratospheric ozone and its related atmospheric changes. The quantitative comparison of GEMS TCO data with TROPOMI and OMPS TCO data shows a high correlation coefficient greater than 0.98 and a low RMSE of less than 1.8 DU over clear sky conditions. GEMS TCO underestimates by - 0.14 % (0.4 DU) with a standard deviation of 2.0 % relative to TROPOMI and overestimates by + 0.1 % (0.3 DU) with a standard deviation of 2.3 % relative to OMPS. It shows that the GEMS TCO agrees very well with the TROPOMI and OMPS TCO. The results are a meaningful scientific advance by providing the first validated, hourly UV ozone retrievals from a satellite in geostationary orbit. This experience can be used to advance research with future geostationary environmental satellite missions, including incoming TEMPO and Sentinel-4.

Funder

National Institute of Environmental Research

National Research Foundation of Korea

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3