Differential Temperature Sensitivity of Intracellular and Extracellular Soil Enzyme Activities

Author:

Adekanmbi Adetunji AlexORCID,Dale Laurence,Shaw Liz J.,Sizmur TomORCID

Abstract

Abstract. Predictions concerning the feedback of soil heterotrophic respiration to a warming climate often do not differentiate between the extracellular and intracellular processes involved in soil organic matter decomposition. This study examined the temperature sensitivities of intracellular and extracellular soil enzyme activities and how they are influenced by previous temperatures. We pre-incubated soils at 5 °C, 15 °C or 26 °C to acclimatise the microbial communities to different thermal regimes for 60 days before measuring potential activities of β-glucosidase and chitinase (extracellular enzymes), glucose-induced respiration (intracellular enzymes), and basal respiration at a range of assay temperatures (5 °C, 15 °C, 26 °C, 37 °C, and 45 °C). A higher pre-incubation temperature decreased soil pH and C / N ratio which exerted a strong legacy effect by decreasing β-glucosidase potential activity and respiration, but not chitinase potential activity. It is likely that this legacy effect is an indirect effect of substrate depletion rather than physiological acclimatation or genetic adaptation. There was no overall significant effect of pre-incubation temperature on temperature sensitivity of these enzymes, perhaps because of the short (60 day) duration of the pre-incubation. However, we found that the intracellular and extracellular enzyme activities differ in their temperature sensitivity and this observation differs depending on the range of temperature used for Q10 estimates of temperature sensitivity. Between 5 °C and 15 °C intracellular and extracellular enzyme activities show equal temperature sensitivity, but between 15 °C and 26 °C intracellular enzyme activity was more temperature sensitive than extracellular enzyme activity and between 26 °C and 37 °C extracellular enzyme activity was more temperature sensitive than intracellular enzyme activity. This result implies that depolymerisation of higher molecular weight carbon is more sensitive to temperature changes at higher temperatures (e.g. higher temperatures on extremely warm days) but the respiration of the generated monomers is more sensitive to temperature changes at moderate temperatures (e.g. mean daily maximum soil temperature). Therefore, since climate change predictions currently indicate that there will be a greater frequency and severity of hot summers and heatwaves, it is possible that global warming may reduce the importance of extracellular depolymerisation relative to intracellular catalytic activity as the rate limiting step of soil organic matter mineralization. We conclude that extracellular and intracellular steps are not equally sensitive to changes in soil temperature and that the previous temperature a soil is exposed to may influence the potential activity, but not temperature sensitivity, of extracellular and intracellular enzymes.

Funder

Commonwealth Scholarship Commission

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3