First-order machine learning based detection and classification of foraminifera in marine sediments from Arctic environments

Author:

Aagaard-Sørensen Steffen,Haugland Johansen ThomasORCID,Junttila Juho

Abstract

<p>Foraminifera are microscopic single-celled organisms, ubiquitous to the marine realm, that construct shells during their life cycle. The shells, in general, fossilize well in the sediment and they are diagnosable due to inter-species morphology and ornamentation variability. Classifying and counting foraminiferal shells is an important tool in assessing and reconstructing past and present environmental, oceanographic and climatological conditions. However, the present day manual identification procedure, performed with a microscope and a needle/brush, is a very time consuming. Circumventing this manual procedure, using machine leaning, promises to dramatically lower the time consumption related to generating foraminiferal data records.</p><p>The first step towards that end is developing a deep learning model that can detect and classify microscopic foraminifera from 2D digital microscope pictures. The work is based on a VGG16 model implementation that has been pre trained on the ImageNet dataset and employing transfer learning techniques to adapt the model to the foraminifera task. The 2D photographic training data input was constructed by combining objects representative of and extracted from Arctic marine sediments (100µm-1mm size fraction) from the Barents Sea region. Four object groups, including 1) calcareous and 2) agglutinated benthic foraminifera, 3) planktic foraminifera and 4) sediments were used in the training data construction. With the initial set-up the algorithms were able to identify adherence to one of the four groups correctly ~90% of the time and with further fine-tuning and refinement reaching 98% correct identifications.</p><p>The second step is to use machine leaning for classification of individual benthic calcareous foraminiferal species within the sediment. The work will focus on the 20 most common species that comprise ca. ≥ 80% of the total benthic calcareous foraminiferal fauna in the Arctic. The training of the algorithms will be done using targeted species-specific 2D photographic and 3D CT scanning data in addition to potentially using hyperspectral imaging.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forabot: Automated Planktic Foraminifera Isolation and Imaging;Geochemistry, Geophysics, Geosystems;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3