Extreme wave events attribution using ERA5 datasets for storm-surge studies in the northern Adriatic sea

Author:

Porcu FedericoORCID,Aragão LeonardoORCID,Aguzzi Margherita,Valentini AndreaORCID,Debele Sisay,Kumar Prashant,Loupis MichaelORCID,Montesarchio Myriam,Mercogliano Paola,Di Sabatino SilvanaORCID

Abstract

<p>Extreme hydro-meteorological events are often defined by the statistical analysis of some parameter that measures the strength of the event over a long enough time series. The parameter could refer to the intensity of the event in terms of energy or to the impact of the event on the environment. This attribution becomes even more relevant when used as reference for future climate projections, suggesting a possible increase in the number of extreme events considering the attribution applied to the past database. <br>In the literature concerning storm-surge, the use of significant wave height (Hs) percentiles to define thresholds of an extreme event is a common practice when dealing with sufficiently long datasets. Usually, this value ranges from 90th up to 99.5th trying to highlight about 3-6 Hs peaks per year. But, in fact, thresholds should provide a benchmark for how much a region can withstand an extreme event. The Italian coast of the northern Adriatic is recently increasing its sensitivity to such episodes, that threaten one of the most active touristic hub of Italy, the highly valuable Po Delta UNESCO Biosphere Reserve and city of Venice fragile structure. Recently in late 2019, a strong event hit Venice with high tides flooding the city's main monument, St. Mark's Basilica, for the 6th time in 1200 years, with levels very similar to the worst event in history in 1966. <br>Attempting to better understand the distribution of these extreme events throughout last decades and how reanalysis products can be useful for storm-surge studies, this paper presents a climatological comparison of significant wave height data extracted from ECMWF ERA5 against the entire historical series available to the Nausicaa wave buoy. This station, owned and managed by ARPAE, is located about 8 km offshore the Municipality of Cesenatico, where the seabed is about 10m, and since 2007 has been used to monitor and prevent sea level related events. In the last 12 years, at least 10 extreme events have been reported based on hourly measured data in Nausicaa and the damage observed along the coast, allowing the local authorities to define Hs thresholds as 1.5 m to significant events and 3.0 m for extreme events. However, analysing the measured data in this period, at least 26 events that exceeded the 3 m threshold were observed, representing the percentile 99.81th of the historical series, whereas only 10 storm-surge events resulted in damage to cities or environmental protection areas. When analysing Hs extracted from ERA5 at the nearest grid point to Nausicaa (~ 30 km) for the same 26 events, all events were correctly identified by reanalysis and represented with an averaged correlation of 0.96. For Hs series extracted from ERA5, values above 3 m reached the 99.83rd percentile for the same period from 2007 to 2018, and 99.84th when expanded to the last 30 years (since 1989), showing that, although quite restricted, the 99.8th percentile seems to be a good value for identifying extreme events of storm-surge in the northern Adriatic Sea.</p>

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3