Land Subsidence In Jharia Coalfields, Jharkhand, India – Detection, Estimation And Analysis Using Persistent Scatterer Interferometry

Author:

Karanam Vamshi Krishna Rao,Motagh Mahdi,Jain Kamal

Abstract

<p>Subsidence due to coal mining is an increasingly prominent concern in the management of the coalfields. Jharia coalfields, Jharkhand are the oldest and one of the largest coalfields in India. Due to poor management of the coal mines in the past, land subsidence due to coal fires has become a common phenomenon in Jharia. Throughout the year, several factors such as coal fires, seepage of rainwater into mines, and illegal settlements above the abandoned mines contribute to the mining-induced subsidence. Due to such varied causes, subsidence in mining areas is temporally and spatially irregular. Traditional techniques using GPS, leveling, and total station are tedious, time-consuming, and can measure subsidence only on a point basis.</p><p>From the past few years, Interferometric Synthetic Aperture Radar (InSAR) has become a powerful tool to calculate and monitor the land subsidence. Persistent Scatterer Interferometry (PSI) is an advanced time-series interferometry technique, which calculates temporal deformation rates at mm scale with the help of stable pixels in the dataset referred to as Persistent Scatterers. The study aims at the detection and estimation of land subsidence in Jharia coalfield, Jharkhand, India, using the Persistent Scatterer Interferometry (PSI) technique. We used 30 C Band Sentinel-1 SAR images acquired in TOPSAR mode for a period of two years from 2017 to 2019, captured in a descending direction. Data acquired during the dry season are preferred to ensure good coherence. Potential subsidence zones are identified and demarcated using the Differential Interferometry technique in SNAP. PSI analysis is carried out using the StaMPS method. High temporal decorrelation due to the surrounding agricultural land cover and atmospheric interference are significant challenges for the PSI analysis in mining areas. The temporal baseline is adapted accordingly to reduce de-correlation. Atmospheric interference is removed using the TRAIN toolbox using the GACOS correction model. The results show an average subsidence rate in Jharia coal mines of approximately 4 cm/yr. Among the 23 underground mines in Jharia, 6 mines are subsiding at the maximum rate of 12 cm/yr. We identified subsidence in several small coal mines in multiple locations surrounding settlements and agricultural areas that can lead to contamination of groundwater when collapsed. Kustore underground mine covering an area of 1.2 sq. km is the largest subsidence zone in the study area just 200 meters away from the settlements.</p>

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3