The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O)

Author:

Burgard ClaraORCID,Notz Dirk,Pedersen Leif T.ORCID,Tonboe Rasmus T.

Abstract

<p>The diversity in sea-ice concentration observational estimates retrieved from brightness temperatures measured from space is a challenge for our understanding of past and future sea-ice evolution as it inhibits reliable climate model evaluation and initialisation. To address this challenge, we introduce a new tool: the Arctic Ocean Observation Operator (ARC3O). </p><p>ARC3O allows us to simulate brightness temperatures at 6.9 GHz at vertical polarisation from standard output of an Earth System Model to be compared to observations from space at this frequency. We use simple temperature and salinity profiles inside the snow and ice column based on the output of the Earth System Model to compute these brightness temperatures. </p><p>In this study, we evaluate ARC3O by simulating brightness temperatures based on three assimilation runs of the MPI Earth System Model (MPI-ESM) assimilated with three different sea-ice concentration products. We then compare these three sets of simulated brightness temperatures to brightness temperatures measured by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) from space. We find that they differ up to 10 K in the period between October and June, depending on the region and the assimilation run. However, we show that these discrepancies between simulated and observed brightness temperature can be mainly attributed to the underlying observational uncertainty in sea-ice concentration and, to a lesser extent, to the data assimilation process, rather than to biases in ARC3O itself. In summer, the discrepancies between simulated and observed brightness temperatures are larger than in winter and locally reach up to 20 K. This is caused by the very large observational uncertainty in summer sea-ice concentration but also by the melt-pond parametrisation in MPI-ESM, which is not necessarily realistic. </p><p>ARC3O is therefore capable to realistically translate the simulated Arctic Ocean climate state into one observable quantity for a more comprehensive climate model evaluation and initialisation, an exciting perspective for further developing this and similar methods.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3