Operational satellite validation with data from the Pandonia Global Network (PGN)

Author:

Cede Alexander,Tiefengraber Martin,Dehn Angelika,Lefer BarryORCID,von Bismarck Jonas,Casadio Stefano,Abuhassan Nader,Swap RobertORCID,Valin Luke

Abstract

<p>The Pandonia Global Network (PGN) is a worldwide operating network of passive remote sensing spectrometer systems named “Pandora”. PGN is measuring atmospheric trace gases at high temporal resolution with the purpose of air quality monitoring and satellite validation. PGN is an activity carried out jointly by NASA, through the Pandora project at Goddard Space Flight Center, and ESA, through the Austrian contractor LuftBlick, as part of their Joint Program Planning Group Subgroup on calibration and validation and field activities. Many of the more than 50 actual PGN instruments are directly owned by NASA or ESA, another part belongs to other collaborating governmental and academic institutions. A major objective of the PGN is to support the validation and verification of more than a dozen low-earth orbit and geostationary orbit based UV-visible sensors, most notably Sentinel 5P, TEMPO, GEMS and Sentinel 4. PGN instruments are homogeneously calibrated and their data are centrally processed in real-time. Starting in June 2019, the PGN team has made more and more network locations “official PGN sites”, which means all required technical and logistical steps for this purpose have been performed. At the end of 2019 there are 18 such official network sites, where quality assured data are uploaded daily to EVDC (ESA Atmospheric Validation Data Centre), where they are used for operational validation of Sentinel 5P retrievals (see e.g. http://mpc-vdaf-server.tropomi.eu/no2/no2-offl-pandora). The current official PGN data products are total vertical column amounts of NO2 and O3 from direct sun observations. Research data products include total vertical columns amounts of SO2 and HCHO from direct sun observations as well as surface concentrations, tropospheric columns amounts, and vertical profiles for NO2 and HCHO from sky observations. These named research products are planned to become official over the course of the year 2020.</p>

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3