Daily streamflow prediction using an LSTM neural network in Alpine catchments

Author:

Anand MohitORCID,Molnar PeterORCID,Peleg NadavORCID

Abstract

<p>Prediction of rainfall-runoff response in Alpine catchments is complex because hydrological processes vary strongly in space and time, they are elevation and temperature dependent, subsurface water stores are heterogeneous, snow plays an important role, and runoff response is fast. As a result, the transformation of rainfall into runoff is highly nonlinear. Machine Learning (ML) methods are suitable for reproducing such nonlinearities between input and output data and have been used for streamflow prediction. Recurrent Neural Networks (RNNs) with memory states, such as Long and Short-Term Memory (LSTM) models, are particularly suitable for hydrological variables that are dependent in time. An example of a recent application of LSTM to the rainfall-runoff transformation in many catchments in the USA showed that the LSTM model can learn physically meaningful catchment embeddings from precipitation-temperature-streamflow data, and performs comparably to widely used conceptual hydrological models (Kratzert et al., 2019).</p><p>In this study, we tested the LSTM approach on high-quality daily data from 23 Alpine catchments in Switzerland with three goals in mind. First, the LSTM model was trained and validated using daily climate variables (precipitation, air temperature, sunshine duration) and streamflow data on all catchments individually and the performance was compared to a distributed hydrological model (PREVAH). The performance of the LSTM model was in many (but not in all) cases better than the hydrological model. Second, a single LSTM model was trained in all catchments simultaneously, embedding terrain attributes extracted from the Digital Elevation Model (DEM). In this way differences between catchments related to the elevation and temperature dependent hydrological processes, such as snow accumulation and melt, evapotranspiration, runoff generation, etc., can be captured. We show the performance of this model and evaluate the regionalization potential provided by it. Third, the LSTM model was applied in an ensemble forecasting context, and we discuss the benefits and limitations this application brings compared to forecasting with a process-based hydrological model.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3