Water Management and Transfers Optimization with Probabilistic Seasonal Forecasts

Author:

Zhu TingjuORCID,Marques Guilherme,Medellin-Azuara JosuéORCID,Lund Jay

Abstract

<p>Advances in probabilistic seasonal flow forecasts sparked renewed interests to improve water management, through explicit incorporation of forecasts and forecast uncertainties into decision-making. Here, we develop a three-stage stochastic programming model to optimize integrated agricultural and urban water management decisions by directly considering probabilistic seasonal flow forecasts. The model represents urban water users which make short-term and long-term water conservation choices to maximize supply reliability and minimize conservation costs; it also represents irrigators which optimize land and water allocations to annual and perennial crops to maximize farm revenue, besides water transfers between agricultural and urban uses. Long-term urban conservation measures, areas of perennial crops, and capital investments in onfarm irrigation are considered in the first stage; annual crop areas, which depend on forecasted flows, are considered in the second stage; and reductions of irrigated annual and perennial crop areas due to water scarcity, conjunctive use operations, and water transfers informed by realized hydrologic year types are considered in the third stage. The temporal hierarchy of these decisions intends to approximate actual decision-making process by simultaneously considering long- and short-term decisions, forecasts, and forecasting skills. This paper provides a framework for quantifying the value of probabilistic forecasting information and forecasting skills, for managing complex regional water systems, including agricultural and urban water uses, water transfers, and conjunctive use of surface water and groundwater.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The forecasting of water runoff of the Styr river for the coming years;Visnyk of V.N. Karazin Kharkiv National University, series Geology. Geography. Ecology;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3