Deep learning for monthly Arctic sea ice concentration prediction

Author:

Andersson Tom,Agocs Fruzsina,Hosking ScottORCID,Pérez-Ortiz María,Paige Brooks,Russell Chris,Elliott Andrew,Law Stephen,Wilkinson Jeremy,Askenov Yevgeny,Schroeder DavidORCID,Tebbutt Will,Faul Anita,Shuckburgh Emily

Abstract

<p>Over recent decades, the Arctic has warmed faster than any region on Earth. The rapid decline in Arctic sea ice extent (SIE) is often highlighted as a key indicator of anthropogenic climate change. Changes in sea ice disrupt Arctic wildlife and indigenous communities, and influence weather patterns as far as the mid-latitudes. Furthermore, melting sea ice attenuates the albedo effect by replacing the white, reflective ice with dark, heat-absorbing melt ponds and open sea, increasing the Sun’s radiative heat input to the Arctic and amplifying global warming through a positive feedback loop. Thus, the reliable prediction of sea ice under a changing climate is of both regional and global importance. However, Arctic sea ice presents severe modelling challenges due to its complex coupled interactions with the ocean and atmosphere, leading to high levels of uncertainty in numerical sea ice forecasts.</p><p>Deep learning (a subset of machine learning) is a family of algorithms that use multiple nonlinear processing layers to extract increasingly high-level features from raw input data. Recent advances in deep learning techniques have enabled widespread success in diverse areas where significant volumes of data are available, such as image recognition, genetics, and online recommendation systems. Despite this success, and the presence of large climate datasets, applications of deep learning in climate science have been scarce until recent years. For example, few studies have posed the prediction of Arctic sea ice in a deep learning framework. We investigate the potential of a fully data-driven, neural network sea ice prediction system based on satellite observations of the Arctic. In particular, we use inputs of monthly-averaged sea ice concentration (SIC) maps since 1979 from the National Snow and Ice Data Centre, as well as climatological variables (such as surface pressure and temperature) from the European Centre for Medium-Range Weather Forecasts reanalysis (ERA5) dataset. Past deep learning-based Arctic sea ice prediction systems tend to overestimate sea ice in recent years - we investigate the potential to learn the non-stationarity induced by climate change with the inclusion of multi-decade global warming indicators (such as average Arctic air temperature). We train the networks to predict SIC maps one month into the future, evaluating network prediction uncertainty by ensembling independent networks with different random weight initialisations. Our model accounts for seasonal variations in the drivers of sea ice by controlling for the month of the year being predicted. We benchmark our prediction system against persistence, linear extrapolation and autoregressive models, as well as September minimum SIE predictions from submissions to the Sea Ice Prediction Network's Sea Ice Outlook. Performance is evaluated quantitatively using the root mean square error and qualitatively by analysing maps of prediction error and uncertainty.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time GeoAI for high-resolution mapping and segmentation of arctic permafrost features;Proceedings of the 5th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3