Impacts of future land cover and climate changes on landslide susceptibility. Results obtained from regional-scale modelling in the Pyrenees.

Author:

Hürlimann MarcelORCID,Medina Vicente,Guo Zizheng,Puig-Polo Carol,Lloret Antonio,Vaunat JeanORCID

Abstract

<p>Future environmental changes will strongly affect the occurrence of rainfall-induced landslides in mountainous regions. In our ongoing study, we focus on the effects of climate changes as well as land use and land cover (LULC) changes on shallow slope failures in the Pyrenees. For this reason, a physically-based susceptibility model was developed, which calculates the landslide susceptibility at regional scale. The model merges two different approaches for the calculation of pore fluid pressure and also includes the option of defining the values of input parameters stochastically.</p><p>The model was validated using landslide inventories from two different study areas located in the Central and Eastern Pyrenees. One is the inventory of historic shallow slides and debris flows in Andorra country. The other one is the inventory of the catastrophic landslide episode in Val d’Aran area in June 2013, which includes 393 landslide initiation points. The susceptibility modelling of these two validation cases produced acceptable results and showed that our physically-based model is producing consistent stability conditions.</p><p>In the next step, the future LULC and climate changes until the end of the 21th century were simulated for Val d’Aran study area. The LULC changes were determined with the IDRISI TerrSet software suite, while the climate changes were obtained from the ensemble of regional climate models using RCP 4.5 and 8.5 scenarios. The results of the susceptibility modelling showed that the impacts of future LULC changes increase the overall stability because of the larger area of forest and shrubs (and consequently higher cohesion due to root strength). In contrast, the impact of future climate changes, which was principally incorporated by higher rainfall intensity, reduced the overall slope stability. However, when we compared the impacts of both future changes, the results showed that the influence of the vegetation expansion is more important than the effect of higher rainfall intensity. Therefore, the overall stability conditions in the study area seem to slightly improve in the future.</p><p>As always in such studies, there are many uncertainties in the input data and additional simulations are necessary to confirm the observed trends. Nonetheless, the outcomes provide helpful information for researchers and practitioners that deal with the impacts of future changes on landslide susceptibility in mountainous regions.</p>

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3