Using neural networks for postprocessing of numerical weather predictions in complex terrain

Author:

Bhend JonasORCID,Spirig ChristophORCID,Hürlimann Max,Moret Lionel,Liniger MarkORCID

Abstract

<p>Weather forecasts have been steadily improving in quality over the last decades. These ongoing improvements are due to advances in numerical weather prediction (NWP) and the advent of ever more powerful supercomputers that allow simulating future weather and its uncertainty with increasing resolution and using ensemble approaches. Such physics-based computer models, however, are not free of systematic errors. Statistical postprocessing can be used to calibrate NWP forecasts to further improve forecast quality and better exploit the available information. Here we present results from several explorative deep learning studies using artificial neural networks (ANN) to calibrate high resolution forecasts of temperature, precipitation, wind, and cloud cover in Switzerland. These first attempts at ANN-based postprocessing help us to understand the strengths and weaknesses of machine learning and are the basis to build more complex and comprehensive statistical models accounting for local effects in complex terrain such as the Swiss Alps. In all cases, ANN leads to significant improvements over the direct NWP output. While the improvement is comparable in magnitude with improvements achieved with conventional postprocessing approaches, ANN-based postprocessing is easier to generalize in space for a calibration of forecasts also at unobserved sites. In addition to the results of the postprocessing, we will also discuss the lessons learned so far in using machine learning for this particular problem.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3