Development of events detector for monitoring cryoseisms in upper soils

Author:

Afonin NikitaORCID,Kozlovskaya Elena

Abstract

<p>In some problems of solid Earth geophysics analysis of the huge amount of continuous seismic data is necessary. One of such problems is an investigation of so-called frost quakes or cryoseisms in the Arctic caused by extreme weather events. Weather extremes such as rapid temperature decrease in combination with thin snow cover can result in cracking of water-saturated soil and rock when the water has suddenly frozen and expanded. As cryoseisms can be hazardous for industrial and civil objects located in the near-field zone, their monitoring and analysis of weather conditions during which they occur, is necessary to access hazard caused by extreme weather events. One of the important tasks in studying cryoseisms is the development of efficient data processing routine capable to separate cryoseisms from other seismic events and noise in continuous seismic data. In our study, we present an algorithm for identification of cryoseisms that is based on classical STA/LTA algorithm for seismic event detection and neural network for their classification using selected characteristics of the records.</p><p>To access characteristics of cryoseisms, we used 3-component recordings of a swarm of strong cryoseismic events with similar waveforms that were registered on 06.06.2016 by seismic station OUL in northern Finland. The strongest event from the swarm produced a fracture on the road surface and damaged basements of buildings in the municipality of Oulu. Assuming that all events in the swarm were caused by the same mechanism (freezing of water-saturated soil), we used them as a learning sample for the neural network. Analysis of these events has shown that most of them have many similarities in selected records characteristics (central frequencies, duration etc.) with the strongest event and with each other. Application of this algorithm to the continuous seismic data recorded since the end of November 2015 to the end of February 2016, showed that the number of cryoseisms per day strongly correlates with variations of air temperature.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frost Quakes: Crack Formation by Thermal Stress;Journal of Geophysical Research: Earth Surface;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3