The 3D stress state within typical salt structures

Author:

Baumann TobiasORCID,Kaus BorisORCID,Popov Anton,Urai JanosORCID

Abstract

<p>Salt caverns are created during the process of solution mining or built actively for underground storage purposes required for the energy transition. In most cavern-scale numerical models, deviatoric stresses within the salt dome are assumed to be negligible in magnitude. However, as salt structures are typically not homogeneous, this assumption is known to be incorrect. Stress variations may be caused by internal heterogeneities such as the presence of anhydrite layers, or by the large-scale structure and ongoing deformation of the salt dome or pillow as a result of their lower density compared to the overlying rocks. The rheology of the salt itself, a not very well constrained parameter, which varies significantly between different types of salt, may also have a significant effect.</p><p>In the scope of the Dutch KEM-17 project (Knowledge Programme on Effects of Mining) on <em>Over-pressured salt solution mining caverns and possible leakage mechanisms</em>, we examined which differential stresses can develop in a typical salt-structure (salt pillow, salt wall, and flat-bedded salt).  In order to make recommendations for avoiding undesired interference effects between caverns and salt dome boundaries, it is crucial to understand better how the stresses caused by salt-deformation vary within the salt dome. Which lower/upper bounds are to be expected for a particular type of structure? Where are such stresses likely to be negligible, and can we safely use existing approaches that neglect the background stress field? To what extent do uncertainties in the model parameters and geometries affect the stress state in the salt dome? To answer these questions, we used 3D thermomechanical models, for which we incorporated the state-of-the-art rheological flow laws of salt and assessed the stress state over approximately 300 kyrs, including the effect of tectonic regimes and glacial (un-)loading.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximum admissible pressure in salt caverns used for brine production and hydrocarbon storage;Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3