Earth Surface Monitoring with Spire’s New GNSS Reflectometry (GNSS-R) CubeSats

Author:

Freeman VahidORCID,Masters Dallas,Jales Philp,Esterhuizen Stephan,Ebrahimi Ellie,Irisov Vladimir,Ben Khadhra Kais

Abstract

<p>Spire Global operates the world’s largest and rapidly growing constellation of CubeSats performing GNSS based science and Earth observation. The Spire constellation, performs a variety of GNSS science, including radio occultation (GNSS-RO), ionosphere and space weather measurements, and precise orbit determination. In December 2019, Spire launched two new satellites to perform GNSS reflectometry (GNSS-R). GNSS-R is a relatively new technique based on a passive bistatic radar system. The potential of space-borne GNSS-R observations for ocean and land applications has been demonstrated by other GNSS-R missions, including the NASA Cyclone Global Navigation Satellite System (CYGNSS) and the UK’s Technology Demonstration Satellite, TechDemoSat (TDS-1). </p><p>We present initial results from these new Spire GNSS-R satellites that are primarily focused on retrieving soil moisture but also estimate other Earth surface properties such as ocean wind speeds and flood inundation/wetland mapping. Prior to the launch of Spire’s GNSS-R satellites and in preparation for Level-2 data production, we developed algorithms and processing chains for land applications. We will present Spire's Soil Moisture (SM) retrieval method using CYGNSS observations. We evaluated the implemented SM change detection algorithm by comparing the Spire’s daily SM product with NASA’s Soil Moisture Active Passive (SMAP) observations and in-situ SM measurements. The results of study indicate remarkable retrieval skills of the GNSS-R technique for soil moisture monitoring at a medium spatial resolution. Spire’s GNSS-R satellites are tuned for land applications with a series of hardware and software optimizations for better signal calibration and acquiring many more data per satellite compared to CYGNSS. A more robust GNSS-R SM retrieval at finer spatial resolution will be possible in the near future after having more Spire satellites in orbit.</p><p>Spire’s current and future GNSS-R satellites will provide unprecedented sub-daily global coverage with sub-kilometer spatial resolution. Such intensive data acquisition is of great importance for many land and ocean applications. </p>

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3