Towards an automatic landslide mapping tool based on satellite imagery and geomorphological parameters. A study of the Itogon area (Philippines) after Typhoon Mangkhut

Author:

Abancó Clàudia,Bennett GeorginaORCID,Briant Julien,Battiston Stéphanie

Abstract

<p>Landslides and floods driven by typhoon and monsoon rainfall cause thousands of fatalities and millions of pesos in damage to infrastructure and commerce in the Philippines each year. The Philippines accounts for 46% of rainfall-triggered landslides in SE Asia, although it represents only 6% of the land area (Petley, 2012).</p><p>Despite their relevance, landslide inventories are very scarce in the Philippines, and most of them are point-based inventories, so lacking landslide magnitude. This makes it difficult both to assess their magnitude-frequency relationships (major component of hazard assessment) and to provide landslide sediment delivery rates to the river network (needed for better prediction of channel morphodynamics, flood risk and reservoir management), which is one of the main goals of the SCaRP project (<strong>S</strong>imulating <strong>C</strong>ascading <strong>R</strong>ainfall-triggered landslide hazards in the <strong>P</strong>hilippines), funded under Newton Programme (UK Research and Innovation).</p><p>Manually mapping landslides to obtain polygon-based landslide inventories in areas affected by RILs (Rainfall Induced regional Landslide events) is a time-consuming task, which is often not affordable for the authorities in terms of resources and time. Meanwhile, automatic methods to map landslides based on satellite imagery have broadly improved during the last decade (e.g.: Alvioli et al 2018).</p><p>The city of Itogon (Benguet, Luzon) and its surroundings was hit by typhoon Mangkhut in September 2018, which triggered thousands of landslides, including a fatal one that killed over 70 miners. We selected a test area of 135 km<sup>2</sup>, with a high density of landslides.</p><p>The objective of this work was twofold: 1) to characterize the geomorphological features of the landslides that occurred in the area of Itogon due to the passage of Typhoon Mangkhut, 2) to analyze the potential of automatic tools to map landslides from satellite imagery.</p><p>A total number of 1100 shallow landslides and flows were manually mapped, with areas ranging from tens to tens of thousands of m<sup>2</sup>.  An automatic pixel-based approach (developed within H2020 HEIMDALL project and called Slidex)  was tested, which relies on a Random Forest classification using Sentinel-2 bands and a set of radiometric indices. The algorithm was trained over several regions (e.g. Japan, Sierra Leone) and applied to the Philippines. The results suggest that the change in land cover is the best indicator to identify landslides automatically, though the efficiency of the tool was improved by including geomorphological parameters such as slope and minimum area affected.</p><p> </p><p>Alvioli, M., Mondini, A. C., Fiorucci, F., Cardinali, M., & Marchesini, I. (2018). Topography-driven satellite imagery analysis for landslide mapping. Geomatics, Natural Hazards and Risk, 9(1), 544–567. https://doi.org/10.1080/19475705.2018.1458050</p><p>Petley, D. (2012) Global patterns of loss of life from landslides. Geology, 40(10), 927-930</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3