Landscape perspectives in hydrological understanding and modelling for water management

Author:

Arheimer BeritORCID

Abstract

<p>The Darcy medal acknowledges water-resources research, engineering and management. In my medal lecture I will embrace these aspects by telling the story of how my team merges numerical models and observations with landscape information to learn about hydrological processes and provide decision-support to society. We predict spatial and temporal variability of water fluxes and resources at local, regional and global scales to estimate hydrological variables in the past, present and future. We also explore “what if” scenarios for societal planning. Such predictions provide useful knowledge to maintain water resources at suitable quantities and qualities, despite on-going global warming, urbanization and environmental change. Water is the basis for all life and most societal sectors; hence, it must be managed properly for sustainable development. I will demonstrate how our scientific findings from the model applications have influenced water resources engineering and management policy.</p><p>Water management is always local but wider landscape information, such as knowledge about upstream/downstream conditions and residence-time, is needed when designing management measures. Water resources are normally shared by many stakeholders often with opposing objectives. Here, we found that models can have added value for science communication, participatory processes and conflict resolution to reach environmental goals.</p><p>It is well known that numerical models are more or less wrong and linked with uncertainties, but nevertheless, models combined with multiple sources of observations can be very helpful to aggregate information, quantify influence from various processes and describe outcome of complex phenomena. From modelling experiments, I will show how we reached deeper understanding of hydrological process when using the landscape perspective and large-sample empirical data across different physiographical conditions. Linking the model to landscape characteristics also gave us the possibility to make water predictions with some confidence even in data sparse regions and for ungauged catchments.</p><p>Large-scale modelling of water resources should be accompanied with site-specific data and local knowledge to be applicable for water resources engineering and management. Therefore, we share our model and I will exemplify how we reach a better understanding and make use of new science in collaborative efforts across the globe. Recently, the modelled data was also aggregated into societal-relevant indicators and provided through web-based climate and water services. During co-development of such on-line tools with practitioners, however, we encountered a large knowledge gap between data producers and data users, which calls for mutual engagement to reach understanding.</p><p>To sum up, my team uses and provides open data, open science and community building world-wide to accelerate water research by sharing local insights and collective intelligence in addressing multiple landscapes. Yet, scientific knowledge is always preliminary and needs to be challenged by peers and explored by users to be practically beneficial. I therefore advocate for science communication as an emerging field to engage more with. Hydrological scientists have a lot to contribute and learn in dialogues to find hope and solutions under global change, which will help in sustaining the water resources and the Planet as we know it.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3