PaleoJump database for research on rapid climate transitions

Author:

Bagniewski Witold,Rousseau Denis-DidierORCID,Ghil Michael

Abstract

<p><span>Tipping poi</span><span>nts (TPs) in the </span><span>Earth system have been studied with growing interest and concern in recent years due to the potential risk of anthropogenic forcing causing abrupt, and possibly irreversible, climate transitions. Paleoclimate records are essential for identifying TPs in the Earth’s past and to properly understand the climate system’s underlying bifurcation mechanisms. </span><span>Due to their varying quality, resolution, and dating methods, it is often necessary to select the records that give the best representation of past climate. Furthermore, as paleoclimate records vary in their origin, time spans, and periodicities, an objective, automated methodology is crucial for identifying and comparing </span><span>TP</span><span>s. </span></p><p><span>To reach this goal, here we present the PaleoJump database of carefully selected, high-resolution records originating in ice, marine sediments, speleothems, loess, and lake sediments. These records, which include tipping elements, cover long time intervals and represent a global distribution from all continents and ocean basins. For every record, a transition detection methodology based on an augmented Kolmogorov-Smirnov test is applied to identify abrupt transitions. The PaleoJump database </span><span>highlights</span><span> these automatically detected transitions for every record together with other essential information, including location, temporal scale and resolution, as well as temporal plots; it therefore represents a valuable resource for researchers investigating TPs in past climates. This study is supported by</span> <span>the H2020-funded</span> <span>TiPES project.</span></p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic detection of abrupt transitions in paleoclimate records;Chaos: An Interdisciplinary Journal of Nonlinear Science;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3